Have a personal or library account? Click to login
Manufacturing of Biodegradable Scaffolds to Engineer Artificial Blood Vessel Cover

Manufacturing of Biodegradable Scaffolds to Engineer Artificial Blood Vessel

Open Access
|Oct 2018

References

  1. 1. Tu JV, Pashos CL, Naylor CD, et al. (1997). Use of cardiac procedures and outcomes in elderly patients with myocardial infarction in the United States and Canada. N. Engl. J. Med. 336(21), 1500–1505. DOI:10.1056/NEJM19970522336210610.1056/NEJM1997052233621069154770
  2. 2. Wang X, Lin P, Yao Q, Chen C. (2007) Development of Small-Diameter Vascular Grafts. World J Surg. 31, 682–689. DOI: 10.1007/s00268-006-0731-z10.1007/s00268-006-0731-z17345123
  3. 3. Tamura N, Nakamura T, Terai H, et al. (2003). A new acellular vascular prosthesis as a scaffold for host tissue regeneration. Int J Artif Organs. 26(9), 783–792.14655858
  4. 4. Jun HW, Taite LJ, West JL. (2005). Nitric oxide-producing polyurethanes. Biomacromolecules. 6(2), 838–844. DOI: 10.1021/bm049419y10.1021/bm049419y15762649
  5. 5. Fleser PS, Nuthakki VK, Malinzak LE, et al. (2004). Nitric oxide-releasing biopolymers inhibit thrombus formation in a sheep model of arteriovenous bridge grafts. J Vasc Surg. 40(4), 803–811. DOI:10.1016/j. jvs.2004.07.00710.1016/j.jvs.2004.07.00715472611
  6. 6. Baguneid MS, Seifalian AM, Salacinski HJ, Murray D, Hamilton G, Walker MG.(2006). Tissue engineering of blood vessels. Br J Surg. 93(3), 282–290. DOI: 10.1002/bjs.525610.1002/bjs.525616498591
  7. 7. Boccafoschi F, Habermehl J, Vesentini S, Mantovani D. (2005). Biological performances of collagen-based scaffolds for vascular tissue engineering. Biomaterials. 26(35), 7410–7417. DOI: 10.1016/j.biomaterials.2005.05.05210.1016/j.biomaterials.2005.05.05215998538
  8. 8. Lee SJ, Liu J, Oh SH, Soker S, Atala A, Yoo JJ. (2008). Development of a composite vascular scaffolding system that withstands physiological vascular conditions. Biomaterials. 29(19), 2891–2898. DOI: 10.1016/j.bio-materials.2008.03.032.
  9. 9. Zhang Y, Ouyang H, Lim CT, Ramakrishna S, Huang ZM. (2005). Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J Biomed Mater Res B Appl Biomater. 72(1), 156–165. DOI: 10.1002/jbm.b.3012810.1002/jbm.b.3012815389493
  10. 10. He W, Ma Z, Teo WE, Dong YX, Robless PA, Lim TC, et al. (2009). Tubular nanofiber scaffolds for tissue engineered small-diameter vascular grafts. J Biomed Mater Res A. 90(1), 205–216. DOI: 10.1002/jbm.a.3208110.1002/jbm.a.3208118491396
  11. 11. Kuppan P, Sethuraman S, Krishnan UM.(2013). PCL and PCL-gelatin nanofibers as esophageal tissue scaffolds: optimization, characterization and cell-matrix interactions. J Biomed Nanotechnol. 9(1-16),1540-1555. DOI:10.1166/jbn.2013.165310.1166/jbn.2013.165323980502
  12. 12. Nam J, Huang Y, Agarwal S, Lannutti J. (2007). Improved cellular infiltration in electrospun fiber via engineered porosity. Tissue Eng. 13(9), 2249–2257. DOI: 10.1089/ten.2006.030610.1089/ten.2006.0306494898717536926
  13. 13. Browning MB, Dempsey D, Guiza V, Becerra S, Rivera J, Russell B, et al. (2012). Multilayer vascular grafts based on collagen-mimetic proteins. Acta Biomater. 8(3), 1010–1021. doi: 10.1016/j.actbio.2011.11.01510.1016/j.actbio.2011.11.015
  14. 14. Ratcliffe A. (2000). Tissue engineering of vascular grafts. Matrix Biol. 19(4),353–357. DOI: 10.1016/S0945-053X(00)00080-910.1016/S0945-053X(00)00080-9
  15. 15. Stegemann JP, Kaszuba SN, Rowe SL. (2007). Review: advances in vascular tissue engineering using protein-based biomaterials. Tissue Eng. 13(11), 2601–2613. DOI:10.1089/ten.2007.019610.1089/ten.2007.0196
  16. 16. Bouten CVC, Dankers PYW, Driessen-Mol A, Pedron S, Brizard AMA, Baaijens FPT. (2011). Substrates for cardiovascular tissue engineering. Adv Drug Deliv Rev. 63(4-5), 221–241. DOI: 10.1016/j.addr.2011.01.00710.1016/j.addr.2011.01.007
  17. 17. Wise SG, Byrom MJ, Waterhouse A, Bannon PG, Ng MKC, Weiss AS. (2011). A multilayered synthetic human elastin/polycaprolactone hybrid vascular graft with tailored mechanical properties. Acta Biomater. 7(1), 295–303. DOI: 10.1016/j.actbio.2010.07.02210.1016/j.actbio.2010.07.022
  18. 18. McKenna KA, Hinds MT, Sarao RC, Wu P-C, Maslen CL, Glanville RW, et al. (2012). Mechanical property characterization of electrospun recombinant human tropoelastin for vascular graft biomaterials. Acta Biomater. 8(1), 225–233. DOI: 10.1016/j.actbio.2011.08.00110.1016/j.actbio.2011.08.001
  19. 19. Klinkert P, Post PN, Breslau PJ, van Bockel JH. Saphenous vein versus PTFE for above-knee femoropopliteal bypass. (2004). A review of the literature. Eur J Vasc Endovasc Surg. 27(4), 357–362. DOI: 10.1016/j.ejvs.2003.12.02710.1016/j.ejvs.2003.12.027
  20. 20. Greenwald SE, Berry CL. (2000). Improving vascular grafts: the importance of mechanical and haemo-dynamic properties. J Pathol. 190(3), 292–299. DOI: 10.1002/(SICI)1096-9896(200002)190:3<;292::AID-PATH528>3.0.CO;2-S10.1002/(SICI)1096-9896(200002)190:3<;292::AID-PATH528>3.0.CO;2-S
  21. 21. Seal BL, Otero TC and Panitch A. (2001). Polymeric biomaterials for tissue and organ regeneration. Materials Science and Engineering R-Reports. 34(4-5), 147-230. DOI: 10.1016/S0927-796X(01)00035-310.1016/S0927-796X(01)00035-3
  22. 22. Kwon IK, Kidoaki S, Matsuda T. (2005). Electrospun nano- to microfiber fabrics made of biodegradable copolyesters: structural characteristics, mechanical properties and cell adhesion potential. Biomaterials. 26(18), 3929-3939. DOI: 10.1016/j.biomaterials.2004.10.00710.1016/j.biomaterials.2004.10.007
  23. 23. Barbarisi M, Marino G, Armenia E, Vincenzo Q, Rosso F, Porcelli M, Barbarisi A. (2015). Use of polycaprolac-tone (PCL) as scaffolds for the regeneration of nerve tissue. J Biomed Mater Res A. 103(5), 1755-1760. DOI: 10.1002/jbm.a.3531810.1002/jbm.a.35318
  24. 24. Catto V, Farè S, Freddi G, and Tanzi MC. (2014). Vascular Tissue Engineering: Recent Advances in Small Diameter Blood Vessel Regeneration. ISRN Vascular Medicine, 2014, Article ID 923030, 27 pages. DOI:10.1155/2014/92303010.1155/2014/923030
  25. 25. Couet F, Rajan N, and Mantovani D. (2007). Macromolecular biomaterials for scaffold-based vascular tissue engineering. Macromolecular Bioscience. 7(5), 701–718. DOI: 10.1002/mabi.20070000210.1002/mabi.200700002
  26. 26. Pankajakshan D and Agrawal DK. (2010). Scaffolds in tissue engineering of blood vessels. Canadian Journal of Physiology and Pharmacology. 88(9), 855–873. DOI: 10.1139/y10-07310.1139/Y10-073
  27. 27. Lee SJ, Liu J, SOh SH, Soker S, Atala A, and Yoo JJ. (2008). Development of a composite vascular scaffolding system that withstands physiological vascular conditions. Biomaterials. 29(19), 2891–2898. DOI:10.1016/j.biomaterials.2008.03.03210.1016/j.biomaterials.2008.03.032
  28. 28. de Valence S, Tille JC, Mugnai D et al. (2012a). Long termperformance of polycaprolactone vascular grafts in a rat abdominal aorta replacement model. Bio-materials. 33(1), 38–47. DOI: 10.1016/j.biomaterials.2011.09.02410.1016/j.biomaterials.2011.09.024
  29. 29. Watanabe M, Shin’oka T, Tohyama S, et al. (2001). Tissue-engineered vascular autograft: Inferior vena cava replacement in a dog model. Tissue Eng. 7(4), 429–439. DOI:10.1089/1076327015243648110.1089/10763270152436481
  30. 30. Shinoka T, Shum-Tim D, Ma PX, et al. (1998). Creation of viable pulmonary artery autografts through tissue engineering. J Thorac Cardiovasc Surg. 115(3), 536–546. DOI: 10.1016/S0022-5223(98)70315-010.1016/S0022-5223(98)70315-0
  31. 31. Nair LS, Laurencin CT. (2007). Biodegradable polymers as biomaterials. Prog Polym Sci. 32(8–9), 762–798. DOI: 10.1016/j.progpolymsci.2007.05.01710.1016/j.progpolymsci.2007.05.017
  32. 32. McClure MJ, Sell SA, Ayres CE, Simpson DG, Bowlin GL. (2009). Electrospinning-aligned and random polydioxanone–polycaprolactone – silk fibroin-blended scaffolds: geometry for a vascular matrix. Biomed Mater. 4(5), 055010. DOI: 10.1088/1748-6041/4/5/05501019815970
  33. 33. de Valence S, Tille JC, Giliberto JP et al. (2012b). Advantages of bilayered vascular grafts for surgical applicability and tissue regeneration. Acta Biomater. 8(11), 3914–3920. DOI: 10.1016/j.actbio.2012.06.03510.1016/j.actbio.2012.06.03522771455
  34. 34. de Valence S, Tille JC, Mugnai D et al. (2012c). Long term performance of polycaprolactone vascular grafts in a rat abdominal aorta replacement model. Bio-materials. 33(1), 38–47. DOI: 10.1016/j.biomaterials.2011.09.02410.1016/j.biomaterials.2011.09.02421940044
  35. 35. Recum AF, Shannon CE, Cannon CE et al. (1996). Surface roughness, porosity, and texture as modifiers of cellular adhesion. Tissue Eng. 2(4), 241–253. DOI: 10.1089/ten.1996.2.2411987795610.1089/ten.1996.2.24119877956
  36. 36. Schmidt, D, Asmis LM, Odermatt B et al. (2006). Engineered living blood vessels: functional endothelia generated from human umbilical cord-derived progenitors. Ann Thorac Surg. 82(4), 1465-1471. DOI: 10.1016/j.athoracsur.2006.05.06610.1016/j.athoracsur.2006.05.0661699695516996955
  37. 37. Hučko B. (2010). Experimental measurement of arterial mechanical properties. Proc. 11th Pan- American Congr Appl Mech Brazil. January 04-08.
DOI: https://doi.org/10.1515/sjecr-2017-0032 | Journal eISSN: 2956-2090 | Journal ISSN: 2956-0454
Language: English
Page range: 215 - 221
Submitted on: Mar 6, 2017
Accepted on: Mar 27, 2017
Published on: Oct 29, 2018
Published by: University of Kragujevac, Faculty of Medical Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Maja Milosevic, Nikola Mijailovic, Dalibor Nikolic, Nenad Filipovic, Aleksandar Peulic, Mirko Rosic, Suzana Pantovic, published by University of Kragujevac, Faculty of Medical Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.