Have a personal or library account? Click to login
Possible Role of N-Methyl-D-Aspartate Receptors in Physiology and Pathophysiology of Cardiovascular System Cover

Possible Role of N-Methyl-D-Aspartate Receptors in Physiology and Pathophysiology of Cardiovascular System

Open Access
|May 2019

References

  1. 1. Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R. (2010). Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev, 62(3), 405-96.10.1124/pr.109.002451
  2. 2. Sobolevsky AI. (2015). Structure and gating of tetrameric glutamate receptors. J Physiol, 593(1), 29-38.10.1113/jphysiol.2013.264911
  3. 3. Dravid SM, Erreger K, Yuan H, Nicholson K, Le P, Lyuboslavsky P, Almonte A, Murray E, Mosely C, Barber J, French A, Balster R, Murray TF, Traynelis SF. (2007). Subunit-specific mechanisms and proton sensitivity of NMDA receptor channel block. J Physiol, 581(Pt 1), 107-28.10.1113/jphysiol.2006.124958
  4. 4. Morris RG, Anderson E, Lynch GS, Baudry M. (1986). Selective impairment of learning and blockade of longterm potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature, 319(6056), 774-6.10.1038/319774a0
  5. 5. Martin SJ, Grimwood PD, Morris RG. (2000). Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci, 23, 649-711.10.1146/annurev.neuro.23.1.64910845078
  6. 6. Snyder EM, Nong Y, Almeida CG, Paul S, Moran T, Choi EY, Nairn AC, Salter MW, Lombroso PJ, Gouras GK, Greengard P. (2005). Regulation of NMDA receptor trafficking by amyloid-beta. Nat Neurosci, 8(8), 1051-8.1602511110.1038/nn1503
  7. 7. Bozic M, Valdivielso JM. (2015). The potential of targeting NMDA receptors outside the CNS. Expert Opin Ther Targets, 19(3), 399-413.10.1517/14728222.2014.983900
  8. 8. Morhenn VB, Waleh NS, Mansbridge JN, Unson D, Zolotorev A, Cline P, Toll L. (1994). Evidence for an NMDA receptor subunit in human keratinocytes and rat cardiocytes. Eur J Pharmacol, 268(3), 409-14.10.1016/0922-4106(94)90066-3
  9. 9. Betzen C, White R, Zehendner CM, Pietrowski E, Bender B, Luhmann HJ, Kuhlmann CR. (2009). Oxidative stress upregulates the NMDA receptor on cerebrovascular endothelium. Free Radic Biol Med, 47(8), 1212-20.10.1016/j.freeradbiomed.2009.07.03419660541
  10. 10. Pang X, Liu J, Zhao J, Mao J, Zhang X, Feng L, Han C, Li M, Wang S, Wu D. (2014). Homocysteine induces the expression of C-reactive protein via NMDAr-ROSMAPK- NF-κB signal pathway in rat vascular smooth muscle cells. Atherosclerosis, 236(1), 73-81.10.1016/j.atherosclerosis.2014.06.02125016361
  11. 11. Chen H, Fitzgerald R, Brown AT, Qureshi I, Breckenridge J, Kazi R, Wang Y, Wu Y, Zhang X, Mukunyadzi P, Eidt J, Moursi MM. (2005). Identification of a homocysteine receptor in the peripheral endothelium and its role in proliferation. J Vasc Surg, 41(5), 853-6010.1016/j.jvs.2005.02.021
  12. 12. Monyer H, Sprengel R, Schoepfer R, Herb A, Higuchi M, Lomeli H, Burnashev N, Sakmann B, Seeburg PH. (1992). Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science, 256(5060), 1217-21.
  13. 13. Moriyoshi K, Masu M, Ishii T, Shigemoto R, Mizuno N, Nakanishi S. (1991). Molecular cloning and characterization of the rat NMDA receptor. Nature, 354(6348), 31-7.
  14. 14. Vyklicky V, Korinek M, Smejkalova T, Balik A, Krausova B, Kaniakova M, Lichnerova K, Cerny J, Krusek J, Dittert I, Horak M, Vyklicky L. (2014). Structure, function, and pharmacology of NMDA receptor channels. Physiol Res, 63 Suppl 1, 191-203.10.33549/physiolres.932678
  15. 15. Lin JW, Wyszynski M, Madhavan R, Sealock R, Kim JU, Sheng M. (1998). Yotiao, a novel protein of neuromuscular junction and brain that interacts with specific splice variants of NMDA receptor subunit NR1. J Neurosci, 18(6), 2017-27.10.1523/JNEUROSCI.18-06-02017.1998
  16. 16. Perez-Otano I, Schulteis CT, Contractor A, Lipton SA, Trimmer JS, Sucher NJ, Heinemann SF. (2001). Assembly with the NR1 subunit is required for surface expression of NR3A-containing NMDA receptors. J Neurosci, 21(4), 1228-37.10.1523/JNEUROSCI.21-04-01228.2001
  17. 17. Monyer H, Burnashev N, Laurie DJ, Sakmann B, Seeburg PH. (1994). Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron, 12(3), 529-40.10.1016/0896-6273(94)90210-0
  18. 18. Matsuda K, Fletcher M, Kamiya Y, Yuzaki M. (2003). Specific assembly with the NMDA receptor 3B subunit controls surface expression and calcium permeability of NMDA receptors. J Neurosci, 23(31), 10064-73.10.1523/JNEUROSCI.23-31-10064.2003
  19. 19. Qiu S, Hua YL, Yang F, Chen YZ, Luo JH. (2005). Subunit assembly of N-methyl-d-aspartate receptors analyzed by fluorescence resonance energy transfer. J Biol Chem, 280(26), 24923-30.10.1074/jbc.M41391520015888440
  20. 20. Atlason PT, Garside ML, Meddows E, Whiting P, Mc-Ilhinney RA. (2007). N-Methyl-D-aspartate (NMDA) receptor subunit NR1 forms the substrate for oligomeric assembly of the NMDA receptor. J Biol Chem, 282(35), 25299-307.10.1074/jbc.M70277820017606616
  21. 21. Schüler T, Mesic I, Madry C, Bartholomäus I, Laube B. (2008). Formation of NR1/NR2 and NR1/NR3 heterodimers constitutes the initial step in N-methyl-D-aspartate receptor assembly. J Biol Chem, 283(1), 37-46.10.1074/jbc.M70353920017959602
  22. 22. Stern-Bach Y, Bettler B, Hartley M, Sheppard PO, O’Hara PJ, Heinemann SF. (1994). Agonist selectivity of glutamate receptors is specified by two domains structurally related to bacterial amino acid-binding proteins. Neuron, 13(6): 1345-57.
  23. 23. Yuan H, Hansen KB, Vance KM, Ogden KK, Traynelis SF. (2009). Control of NMDA receptor function by the NR2 subunit amino-terminal domain. J Neurosci, 29(39), 12045-58.10.1523/JNEUROSCI.1365-09.2009277605919793963
  24. 24. Karakas E, Simorowski N, Furukawa H. (2009). Structure of the zinc-bound amino-terminal domain of the NMDA receptor NR2B subunit. EMBO J, 28(24), 3910-20.10.1038/emboj.2009.338
  25. 25. Sobolevsky AI, Rosconi MP, Gouaux E. (2009). X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature, 462(7274), 745-56.
  26. 26. Banke TG, Traynelis SF. (2003). Activation of NR1/NR2B NMDA receptors. Nat Neurosci, 6(2), 144-52.10.1038/nn1000
  27. 27. Vissel B, Krupp JJ, Heinemann SF, Westbrook GL. (2002). Intracellular domains of NR2 alter calcium-dependent inactivation of N-methyl-D-aspartate receptors. Mol Pharmacol, 61(3), 595-605.10.1124/mol.61.3.595
  28. 28. Aow J, Dore K, Malinow R. (2015). Conformational signaling required for synaptic plasticity by the NMDA receptor complex. Proc Natl Acad Sci U S A, 112(47), 14711-6.10.1073/pnas.1520029112
  29. 29. Kleckner NW, Dingledine R. (1988). Requirement for glycine in activation of NMDA-receptors expressed in Xenopus oocytes. Science, 241(4867), 835-7.
  30. 30. Blanke ML, VanDongen AMJ. (2009). Activation Mechanisms of the NMDA Receptor. In: Van Dongen AM, editor. Biology of the NMDA Receptor. Boca Raton (FL): CRC Press/Taylor & Francis, Chapter 13.
  31. 31. Furukawa H, Gouaux E. (2003). Mechanisms of activation, inhibition and specificity: crystal structures of the NMDA receptor NR1 ligand-binding core. EMBO J, 22(12), 2873-85.10.1093/emboj/cdg303
  32. 32. Kolodney G, Dumin E, Safory H, Rosenberg D, Mori H, Radzishevsky I, Wolosker H. (2016). Nuclear compartmentalization of serine racemase regulates d-serine production. Implications for N-methyl-D-aspartate (NMDA) receptor activation. J Biol Chem, 291(6), 2630.
  33. 33. Panatier A, Theodosis DT, Mothet JP, Touquet B, Pollegioni L, Poulain DA, Oliet SH. (2006). Glia-derived Dserine controls NMDA receptor activity and synaptic memory. Cell, 125(4), 775-84.10.1016/j.cell.2006.02.051
  34. 34. Furukawa H, Singh SK, Mancusso R, Gouaux E. (2005). Subunit arrangement and function in NMDA receptors. Nature, 438(7065), 185-92.
  35. 35. Zhang X, Nadler JV. (2009). Postsynaptic response to stimulation of the Schaffer collaterals with properties similar to those of synaptosomal aspartate release. Brain Res, 1295, 13-20.1966460610.1016/j.brainres.2009.07.104
  36. 36. Abushik PA, Niittykoski M, Giniatullina R, Shakirzyanova A, Bart G, Fayuk D, Sibarov DA, Antonov SM, Giniatullin R. (2014). The role of NMDA and mGluR5 receptors in calcium mobilization and neurotoxicity of homocysteine in trigeminal and cortical neurons and glial cells. J Neurochem, 129(2), 264-74.10.1111/jnc.12615
  37. 37. Nahum-Levy R, Lipinski D, Shavit S, Benveniste M. (2001). Desensitization of NMDA receptor channels is modulated by glutamate agonists. Biophys J, 80(5), 2152-66.10.1016/S0006-3495(01)76188-7
  38. 38. de Sousa SL, Dickinson R, Lieb WR, Franks NP. (2000). Contrasting synaptic actions of the inhalational general anesthetics isoflurane and xenon. Anesthesiology, 92(4), 1055-66.1075462610.1097/00000542-200004000-0002410754626
  39. 39. Lester RA, Clements JD, Westbrook GL, Jahr CE. (1990). Channel kinetics determine the time course of NMDA receptor-mediated synaptic currents. Nature, 346(6284), 565-7.
  40. 40. Kash TL, Matthews RT, Winder DG. (2008). Alcohol inhibits NR2B-containing NMDA receptors in the ventral bed nucleus of the stria terminalis. Neuropsychopharmacology, 33(6), 1379-90.10.1038/sj.npp.1301504
  41. 41. Lin YJ, Bovetto S, Carver JM, Giordano T. (1996). Cloning of the cDNA for the human NMDA receptor NR2C subunit and its expression in the central nervous system and periphery. Brain Res Mol Brain Res, 43(1-2), 57-64.10.1016/S0169-328X(96)00146-5
  42. 42. Näsström J, Böö E, Ståhlberg M, Berge OG. (1993). Tissue distribution of two NMDA receptor antagonists, [3H]CGS 19755 and [3H]MK-801, after intrathecal injection in mice. Pharmacol Biochem Behav, 44(1), 9-15.10.1016/0091-3057(93)90275-X
  43. 43. Leung JC, Travis BR, Verlander JW, Sandhu SK, Yang SG, Zea AH, Weiner ID, Silverstein DM. (2002). Expression and developmental regulation of the NMDA receptor subunits in the kidney and cardiovascular system. Am J Physiol Regul Integr Comp Physiol, 283(4), 964-71.10.1152/ajpregu.00629.200112228067
  44. 44. Seeber S, Becker K, Rau T, Eschenhagen T, Becker CM, Herkert M. (2000). Transient expression of NMDA receptor subunit NR2B in the developing rat heart. J Neurochem, 75(6), 2472-7.10.1046/j.1471-4159.2000.0752472.x11080199
  45. 45. LeMaistre JL, Sanders SA, Stobart MJ, Lu L, Knox JD, Anderson HD, Anderson CM. (2012). Coactivation of NMDA receptors by glutamate and D-serine induces dilation of isolated middle cerebral arteries. J Cereb Blood Flow Metab, 32(3), 537-47.10.1038/jcbfm.2011.161329311822068228
  46. 46. Mothet JP, Pollegioni L, Ouanounou G, Martineau M, Fossier P, Baux G. (2005). Glutamate receptor activation triggers a calcium-dependent and SNARE proteindependent release of the gliotransmitter D-serine. Proc Natl Acad Sci U S A, 102(15), 5606-11.10.1073/pnas.040848310255624315800046
  47. 47. Chen H, Fitzgerald R, Brown AT, Qureshi I, Breckenridge J, Kazi R, Wang Y, Wu Y, Zhang X, Mukunyadzi P, Eidt J, Moursi MM. (2005). Identification of a homocysteine receptor in the peripheral endothelium and its role in proliferation. J Vasc Surg, 41(5), 853-60.1588667110.1016/j.jvs.2005.02.02115886671
  48. 48. Akanuma S, Sakurai T, Tachikawa M, Kubo Y, Hosoya K. (2015). Transporter-mediated L-glutamate elimination from cerebrospinal fluid: possible involvement of excitatory amino acid transporters expressed in ependymal cells and choroid plexus epithelial cells. Fluids Barriers CNS, 12, 11.10.1186/s12987-015-0006-x442592125925580
  49. 49. Lerma J, Herranz AS, Herreras O, Abraira V, Martín del Río R. (1986). In vivo determination of extracellular concentration of amino acids in the rat hippocampus. A method based on brain dialysis and computerized analysis. Brain Res, 384(1), 145-55.
  50. 50. McGee MA, Abdel-Rahman AA. (2012). Enhanced vascular neuronal nitric-oxide synthase-derived nitricoxide production underlies the pressor response caused by peripheral N-methyl-D-aspartate receptor activation in conscious rats. J Pharmacol Exp Ther, 342(2), 461-71.10.1124/jpet.112.19446422580349
  51. 51. Liu Y, Zhou L, Xu HF, Yan L, Ding F, Hao W, Cao JM, Gao X. (2013). A preliminary experimental study on the cardiac toxicity of glutamate and the role of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor in rats. Chin Med J (Engl), 126(7), 1323-32.10.3760/cma.j.issn.0366-6999.20120497
  52. 52. Bozic M, de Rooij J, Parisi E, Ortega MR, Fernandez E, Valdivielso JM. (2011). Glutamatergic signaling maintains the epithelial phenotype of proximal tubular cells. J Am Soc Nephrol, 22(6), 1099-111.10.1681/ASN.2010070701
  53. 53. Fahlke C, Kortzak D, Machtens JP. (2016). Molecular physiology of EAAT anion channels. Pflugers Arch, 468(3), 491-502.10.1007/s00424-015-1768-3
  54. 54. Magi S, Arcangeli S, Castaldo P, Nasti AA, Berrino L, Piegari E, Bernardini R, Amoroso S, Lariccia V. (2013). Glutamate-induced ATP synthesis: relationship between plasma membrane Na+/Ca2+ exchanger and excitatory amino acid transporters in brain and heart cell models. Mol Pharmacol, 84(4), 603-14.10.1124/mol.113.087775
  55. 55. Ralphe JC, Segar JL, Schutte BC, Scholz TD. (2004). Localization and function of the brain excitatory amino acid transporter type 1 in cardiac mitochondria. J Mol Cell Cardiol, 37(1), 33-41.10.1016/j.yjmcc.2004.04.008
  56. 56. Laketić-Ljubojević I, Suva LJ, Maathuis FJ, Sanders D, Skerry TM. (1999). Functional characterization of Nmethyl-D-aspartic acid-gated channels in bone cells. Bone, 25(6), 631-7.10.1016/S8756-3282(99)00224-0
  57. 57. Shi S, Liu T, Li Y, Qin M, Tang Y, Shen JY, Liang J, Yang B, Huang C. (2014). Chronic N-methyl-D-aspartate receptor activation induces cardiac electrical remodeling and increases susceptibility to ventricular arrhythmias. Pacing Clin Electrophysiol, 37(10), 1367-7710.1111/pace.12430
  58. 58. D’Amico M, Di Filippo C, Rossi F, Rossi F. (1999). Arrhythmias induced by myocardial ischaemia-reperfusion are sensitive to ionotropic excitatory amino acid receptor antagonists. Eur J Pharmacol, 366(2-3), 167-74.10.1016/S0014-2999(98)00914-5
  59. 59. Sun X, Zhong J, Wang D, Xu J, Su H, An C, Zhu H, Yan J. (2014). Increasing glutamate promotes ischemiareperfusion-induced ventricular arrhythmias in rats in vivo. Pharmacology, 93(1-2), 4-9.10.1159/00035631124401762
  60. 60. Gao X, Xu X, Pang J, Zhang C, Ding JM, Peng X, Liu Y, Cao JM. (2007). NMDA receptor activation induces mitochondrial dysfunction, oxidative stress and apoptosis in cultured neonatal rat cardiomyocytes. Physiol Res, 56(5), 559-69.1692545810.33549/physiolres.93105316925458
  61. 61. Tyagi N, Vacek JC, Givvimani S, Sen U, Tyagi SC. (2010). Cardiac specific deletion of N-methyl-d-aspartate receptor 1 ameliorates mtMMP-9 mediated autophagy/mitophagy in hyperhomocysteinemia. J Recept Signal Transduct Res, 30(2), 78-87.10.3109/10799891003614808292188920170426
  62. 62. Moshal KS, Tipparaju SM, Vacek TP, Kumar M, Singh M, Frank IE, Patibandla PK, Tyagi N, Rai J, Metreveli N, Rodriguez WE, Tseng MT, Tyagi SC. (2008). Mitochondrial matrix metalloproteinase activation decreases myocyte contractility in hyperhomocysteinemia. Am J Physiol Heart Circ Physiol, 295(2), 890-710.1152/ajpheart.00099.2008251921118567713
  63. 63. Meneghini A, Ferreira C, Abreu LC, Valenti VE, Ferreira M, F Filho C, Murad N. (2009). Memantine prevents cardiomyocytes nuclear size reduction in the left ventricle of rats exposed to cold stress. Clinics (Sao Paulo), 64(9), 921-6.1975988710.1590/S1807-59322009000900014274513419759887
  64. 64. Srejovic I, Jakovljevic V, Zivkovic V, Jeremic N, Jevdjevic M, Stojic I, Djuric D. (2015). The effects of glycine, glutamate and their combination on cardiodynamics, coronary flow and oxidative stress in isolated rat heart. Curr Res Cardiol, 2(2), 63-68.10.4172/2368-0512.1000031
  65. 65. Stojic I, Srejovic I, Zivkovic V, Jeremic N, Djuric M, Stevanovic A, Milanovic T, Djuric D, Jakovljevic V. (2017). The effects of verapamil and its combinations with glutamate and glycine on cardiodynamics, coronary flow and oxidative stress in isolated rat heart. J Physiol Biochem, 73(1), 141-153.10.1007/s13105-016-0534-027812957
  66. 66. McCully KS. (1969). Vascular pathology of homocysteinemia: implications for the pathogenesis of arteriosclerosis. Am J Pathol, 56(1), 111-28.
  67. 67. Steed MM, Tyagi SC. (2011). Mechanisms of cardiovascular remodeling in hyperhomocysteinemia. Antioxid Redox Signal, 15(7), 1927-43.10.1089/ars.2010.3721315917921126196
  68. 68. Pizzolo F, Blom HJ, Choi SW, Girelli D, Guarini P, Martinelli N, Stanzial AM, Corrocher R, Olivieri O, Friso S. (2011). Folic acid effects on s-adenosylmethionine, s-adenosylhomocysteine, and DNA methylation in patients with intermediate hyperhomocysteinemia. J Am Coll Nutr, 30(1), 11-8.10.1080/07315724.2011.1071993921697534
  69. 69. Jakubowski H. (2000). Homocysteine thiolactone: metabolic origin and protein homocysteinylation in humans. J Nutr, 130(2S Suppl), 377-381.10.1093/jn/130.2.377S10721911
  70. 70. Hankey GJ, Eikelboom JW. (1999). Homocysteine and vascular disease. Lancet, 354(9176), 407-13.
  71. 71. Herrmann W, Herrmann M, Joseph J, Tyagi SC. (2007). Homocysteine, brain natriuretic peptide and chronic heart failure: a critical review. Clin Chem Lab Med, 45(12), 1633-44.10.1515/CCLM.2007.36018067448
  72. 72. Folbergrová J. (1994). NMDA and not non-NMDA receptor antagonists are protective against seizures induced by homocysteine in neonatal rats. Exp Neurol, 130(2), 344-50.10.1006/exnr.1994.12137867764
  73. 73. Tyagi N, Mishra PK, Tyagi SC. (2009). Homocysteine, hydrogen sulfide (H2S) and NMDA-receptor in heart failure. Indian J Biochem Biophys, 46(6), 441-6.
  74. 74. Chang PY, Lu SC, Lee CM, Chen YJ, Dugan TA, Huang WH, Chang SF, Liao WS, Chen CH, Lee YT. (2008). Homocysteine inhibits arterial endothelial cell growth through transcriptional downregulation of fibroblast growth factor-2 involving G protein and DNA methylation. Circ Res, 102(8), 933-41.1830909910.1161/CIRCRESAHA.108.17108218309099
  75. 75. Austin RC, Lentz SR, Werstuck GH. (2004). Role of hyperhomocysteinemia in endothelial dysfunction and atherothrombotic disease. Cell Death Differ, 11 Suppl 1, 56-64.10.1038/sj.cdd.440145115243582
  76. 76. Tyagi N, Sedoris KC, Steed M, Ovechkin AV, Moshal KS, Tyagi SC. (2005). Mechanisms of homocysteine-induced oxidative stress. Am J Physiol Heart Circ Physiol, 89, 2649–56.10.1152/ajpheart.00548.200516085680
  77. 77. Kamat PK, Kalani A, Tyagi SC, Tyagi N. (2015). Hydrogen Sulfide Epigenetically Attenuates Homocysteine- Induced Mitochondrial Toxicity Mediated Through NMDA Receptor in Mouse Brain Endothelial (bEnd3) Cells. J Cell Physiol, 230(2), 378-94.10.1002/jcp.24722430535725056869
  78. 78. Srejovic I, Jakovljevic V, Zivkovic V, Barudzic N, Radovanovic A, Stanojlovic O, Djuric DM. (2015). The effects of the modulation of NMDA receptors by homocysteine thiolactone and dizocilpine on cardiodynamics and oxidative stress in isolated rat heart. Mol Cell Biochem, 401(1-2), 97-105.10.1007/s11010-014-2296-825467376
DOI: https://doi.org/10.1515/sjecr-2017-0010 | Journal eISSN: 2956-2090 | Journal ISSN: 2956-0454
Language: English
Page range: 3 - 13
Submitted on: Mar 27, 2017
Accepted on: Mar 28, 2017
Published on: May 16, 2019
Published by: University of Kragujevac, Faculty of Medical Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Ivan Srejovic, Vladimir Jakovljevic, Vladimir Zivkovic, Dragan Djuric, published by University of Kragujevac, Faculty of Medical Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.