Have a personal or library account? Click to login
Possible Uses of Data from Hospital Discharge Reports Cover

References

  1. 1. Mihailovic N, Trajkovic G, Simic-Vukomanovic I, Ristic S and Kocic S. Agreement between referral and discharge diagnoses: analysis by groups of international classification of diseases, X revision. Vojnisanit Pregl 2016; 73 (10): in press.10.2298/VSP150427057M29341569
  2. 2. National Hospital Discharge Survey. USA: Centers for disease control and prevention 24/7. Available from: www.cdc.gov/nchs/nhds.htm
  3. 3. Stacionarna zdravstvena zaštita u Republici Srbiji. Zdravstveno-statistički godišnjak Republike Srbije 2013. Beograd: Institut za javno zdravlje Srbije Dr Milan Jovanović Batut; 2014.
  4. 4. OECD (2012), “Average length of stay in hospitals”, in Health at a Glance: Europe 2012, OECD Publishing. Available from: http://dx.doi.org/10.1787/9789264183896-34-en10.1787/9789264183896-34-en
  5. 5. Schoenman J and Sutton J. Understanding and Enhancing the Value of Hospital Discharge Data. Medical Care Research and Review 2007; 64(4):449-468.10.1177/107755870730196317684112
  6. 6. Gray BH. and Clement JP. Databases for research on nonprofit health care organizations: Opportunities and limitations. American Behavioral Scientist 2002; 45 (10): 1550–1591.10.1177/0002764202045010006
  7. 7. O’Malley KJ, Cook KF, Price MD, Wildes KR, Hurdle JF, Ashton CM. Measuring Diagnoses: ICD Code Accuracy. Health Serv Res 2005; 40(5 Pt 2): 1620–1639.10.1111/j.1475-6773.2005.00444.x136121616178999
  8. 8. Hall SF. A user’s guide to selecting a comorbidity index for clinical research. Journal of Clinical Epidemiology 2006; 59:849–855.10.1016/j.jclinepi.2005.11.01316828679
  9. 9. National Association of State Health Data Organizations (NAHDO). Consumer-Purchaser Disclosure Project. The state experience in health quality data collection. Washington: National Partnership for Women and Families, 2004.
  10. 10. Consumer-Purchaser Disclosure Project. The state experience in health quality data collection. Wachinton DC: National Partnership for Women and Families, 2004.
  11. 11. Langenbrunner JC, Cashin C, O’Dougherty S. Designing and implementing provider payment systems: how to manuals. Washington: The World Bank; 2009.10.1596/978-0-8213-7815-1
  12. 12. DrugFacts: Comorbidity: Addiction and Other Mental Disorders. Bethesda: National Institute on Drug Abuse; 2011.
  13. 13. Needham DM, Scales DC, Laupacis A, Pronovost PJ. A systematic review of the Charlson comorbidity index using Canadian administrative databases: a perspective on risk adjustment in critical care research. Journal of Critical Care 2005;20(1):12–9.10.1016/j.jcrc.2004.09.00716015512
  14. 14. Charlson M, Wells MT, Ullman R, King F, Shmukler C. The Charlson Comorbidity Index Can Be Used Prospectively to Identify Patients Who Will Incur High Future Costs. PloS one. 2014;9(12):e112479.10.1371/journal.pone.0112479425451225469987
  15. 15. Laditka J, Laditka S and Probst J. More May Be Better: Evidence of a Negative Relationship between Physician Supply and Hospitalization for Ambulatory Care Sensitive Conditions. Health Serv Res 2005; 40(4):1148–1166.10.1111/j.1475-6773.2005.00403.x136118916033497
  16. 16. Mathauer I, Wittenbecher F. Hospital payment systems based on diagnosis-related groups: experiences in low and middle-income countries. Bull World Health Organ 2013; 91(10): 746–756.10.2471/BLT.12.115931379165024115798
  17. 17. Rankovic A, Rancic N, Jovanovic M, et al. Impact of imaging diagnostics on the budget – Are we spending too much? Vojnosanit Pregl 2013; 70(7): 709-711.
  18. 18. Jakovljevic M, Zugic A, Rankovic A, Dagovic A. Radiation therapy remains the key cost driver of oncology inpatient treatment. J Med Econ 2015; 18(1): 29-36.10.3111/13696998.2014.97116225268728
  19. 19. Jakovljevic M, Milovanovic O. Growing Burden of Non-Communicable Diseases in the Emerging Health Markets: The Case of BRICS. Front Public Health 2015; 3: 65.10.3389/fpubh.2015.00065440747725954740
  20. 20. Vodič kroz sistem dijagnostički srodnih grupa. Beograd: Republički fond za zdravstveno osiguranje; 2013.
  21. 21. Ellekjaer H, Holmen J. Identification of Incident Stroke in Norway. Hospital Discharge Data Compared With a Population-Based Stroke Register. Stroke 1999; 30: 56-60.10.1161/01.STR.30.1.569880388
  22. 22. Leppälä JM, Virtamo J and Heinonen OP. Validation of stroke diagnosis in the National Hospital Discharge Register and the Register of Causes of Death in Finland. Eur J Epidemiol 1999;15(2): 155-160.10.1023/A:1007504310431
  23. 23. Jones SA, Gottesman RF, Shahar E, Wruck L, Rosamond WD. Validity of Hospital Discharge Diagnosis Codes for Stroke: The Atherosclerosis Risk in Communities (ARIC) Study. Stroke 2014; 45(11): 3219-3225.10.1161/STROKEAHA.114.006316429087725190443
  24. 24. Alper E, O’Malley TA, Greenwald J. Hospital Discharge. Up to Date. 2013 Mar 25 [cited 2013 Apr 15]. Available from: http://www.uptodate.com/contents/hospital-discharge.
  25. 25. Qian Li, Zhenqiu Lin, Frederick A Masoudi, at al. National trends in hospital length of stay for acute myocardial infarction in China. BMC Cardiovascular Disorders 2015; 15(1):9.10.1186/1471-2261-15-9436095125603877
  26. 26. Weiss AJ (Truven Health Analytics), Elixhauser A (AHRQ). Overview of Hospital Stays in the United States, 2012. HCUP Statistical Brief #180. October 2014. Agency for Healthcare Research and Quality, Rockville, MD. Available from: http://www.hcup-us.ahrq.gov/reports/statbriefs/sb180-Hospitalizations-United-States-2012.pdf.
  27. 27. Goldberg RJ, Makam RCP, Yarzebski J, McManus DD, Lessard D, Gore JM. Decade Long Trends (2001–2011) in the Incidence and Hospital Death Rates Associated with the In-Hospital Development of Cardiogenic Shock after Acute Myocardial Infarction. Circ Cardiovasc Qual Outcomes 2016. Published online before print February 16, 2016, doi: 10.1161/CIRCOUTCOMES.115.002359.10.1161/CIRCOUTCOMES.115.002359479436926884615
  28. 28. Weiss AJ (Truven Health Analytics), Barrett ML (M.L. Barrett, Inc.), Steiner CA (AHRQ). Trends and Projections in Inpatient Hospital Costs and Utilization, 2003–2013. HCUP Statistical Brief #175. July 2014. Agency for Healthcare Research and Quality, Rockville, MD. Available from: http://www.hcup-us.ahrq.gov/reports/statbriefs/sb175-Hospital-Cost-Utilization-Projections-2013.pdf.
  29. 29. Centers for disease control and prevention [homepage on the Internet]. Atlanta: Trends in Inpatient Hospital Deaths: National Hospital Discharge Survey, 2000–2010. Available from: www.cdc.gov/nchs/data/databriefs/db118.htm.
  30. 30. Aghaei Hashjin A, Kringos DS, Manoochehri J, Aryankhesal A and Klazinga NS. Development and impact of the Iranian hospital performance measurement program. BMC Health Serv Res 2014; 14: 448.10.1186/1472-6963-14-448426304725269656
  31. 31. Treadwell JR, Erinoff E and Coates V. How Electronic Clinical Data Can Improve Health Technology Assessment. EGEMS (Wash DC) 2013; 1(2): 1028.
  32. 32. Filia A, Brenna A, Panà A, Maggio G, Massari M and Ciofi degli Atti M. Health burden and economic impact of measles-related hospitalizations in Italy in 2002–2003. BMC Public Health 2007; 7:169.10.1186/1471-2458-7-169196345017650298
  33. 33. Zwanziger J, Melnick GA, and Bamezai A. Can cost shifting continue in a price competitive environment. Health Econ 2000; 9(3):211-26.10.1002/(SICI)1099-1050(200004)9:3<;211::AID-HEC508>3.0.CO;2-K
  34. 34. Aiken H, Clarke P, Cheund R et al. Educational Levels of Hospital Nurses and Surgical Patient Mortality. JAMA 2003; 290(12)1617-1623.10.1001/jama.290.12.1617
  35. 35. Korenbrot CC, Ehlers S, Crouch JA. Disparities in hospitalizations of rural American Indians. Med Care 2003; 41(5):626-36.10.1097/01.MLR.0000062549.27661.91
  36. 36. Pravilnik o pokazateljima kvaliteta zdravstvene zaštite (“Sl. glasnik RS”, br. 49/2010) (jul 21, 2010).
  37. 37. Quan H, Eastwood C, Tess C, Liu M et al. Validity of AHRQ patient safety indicators derived from ICD-10 hospital discharge abstract data (chart review study). BMJ Open 2013; 3:e003716.10.1136/bmjopen-2013-003716
  38. 38. Drosler SE, Romano PS, Tancredi DJ, et al. International comparability of patient safety indicators in 15 OECD member countries: a methodological approach of adjustment by secondary diagnoses. Health Serv Res 2012; 47(1):275–92.10.1111/j.1475-6773.2011.01290.x
  39. 39. Johantgen M, Elixhauser A, Bali JK, Goldfarb M, Harris DR. Quality indicators using hospital discharge data: state and national applications. Jt Comm J Qual Improv 1998; 24(2):88-105.10.1016/S1070-3241(16)30364-9
  40. 40. Kalankesh LR, Pourasghar F, Jafarabadi MA, Khanehdan N. Depiction of Trends in Administrative Healthcare Data from Hospital Information System. Mater Sociomed. 2015; 27(3): 211-144.10.5455/msm.2015.27.211-214
  41. 41. Quantin C, Benzenine E, Ferdynus C, Sediki M, Auverlot B, Abrahamowicz M et al. Advantages and limitations of using national administrative data on obstetric blood transfusions to estimate the frequency of obstetric hemorrhages. J Public Health (Oxf) 2013;35(1):147-156.10.1093/pubmed/fds057
  42. 42. Government Accountability Office (GAO). Health information technology. HHS is taking steps to develop a national strategy. Report to the Chairman, Committee on the Budget, House of Representatives. 2005; GAO-05-628.
DOI: https://doi.org/10.1515/sjecr-2016-0023 | Journal eISSN: 2956-2090 | Journal ISSN: 2956-0454
Language: English
Page range: 163 - 167
Submitted on: Mar 7, 2016
|
Accepted on: Mar 17, 2016
|
Published on: May 29, 2017
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Sanja Kocic, Dragan Vasiljevic, Snezana Radovanovic, Svetlana Radevic, Ivana Simic Vukomanovic, Natasa Mihailovic, published by University of Kragujevac, Faculty of Medical Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.