Have a personal or library account? Click to login
The Effects of Subchronic Methionine Overload Administered Alone or Simultaneously with L-cysteine or N-acetyl-L-cysteine on Body Weight, Homocysteine Levels and Biochemical Parameters in the Blood of Male Wistar Rats Cover

The Effects of Subchronic Methionine Overload Administered Alone or Simultaneously with L-cysteine or N-acetyl-L-cysteine on Body Weight, Homocysteine Levels and Biochemical Parameters in the Blood of Male Wistar Rats

Open Access
|Sep 2016

References

  1. 1. Finkelstein, JD. (1998). The metabolism of homocysteine: Pathways and regulation. Eur J. Pediatr. 157, 40-44.10.1007/PL00014300
  2. 2. Jordao, AA., Domenici, FA., Lataro, RC., Portari, GV., Vannucchi., H. (2009). Effect of methionine load on homocysteine levels, lipid peroxidation and DNA damage in rats receiving ethanol. Braz. Jourl. of Pharm. Sci. 45(4), 709-714.10.1590/S1984-82502009000400014
  3. 3. Mendes, RH., Mostarda, C., Candido, GO., Moraes-Silva, IC., D’Almeida, V., Belló-Klein, A. et al. (2014). Moderate hyperhomocysteinemia provokes dysfunction of cardiovascular autonomic system and liver oxidative stress in rats. Auton. Neurosci. 180, 43-47.10.1016/j.autneu.2013.10.006
  4. 4. Woo, CW., Prathapasinghe, GA., Siow, YL. (2006). Hyperhomocysteinemia induces liver injury in rat: Protective effect of folic acid supplementation. Biochim. Biophys. Acta 1762(7), 656-665.10.1016/j.bbadis.2006.05.012
  5. 5. Song, YS., Rosenfeld, ME. (2004). Methionine-induced hyperhomocysteinemia promotes superoxide anion generation and NFkappaB activation in peritoneal macrophages of C57BL/6 mice. J. Med. Food. 7(2), 229-234.10.1089/1096620041224021
  6. 6. Costa, MZ., da Silva, TM., Flores, NP., Schmitz, F., da Silva Scherer, EB., Viau, CM., Saffi, J. et al. (2013). Methionine and methionine sulfoxide alter parameters of oxidative stress in the liver of young rats: in vitro and in vivo studies. Mol. Cell. Biochem. 384(1-2), 21-28.10.1007/s11010-013-1777-5
  7. 7. Chin, K., Toue, S., Kawamata, Y., Watanabe, A., Miwa, T., Smriga, M. (2015). A 4-week toxicity study of methionine in male rats. Int. J. Toxicol. 34(3), 233-241.10.1177/1091581815583678
  8. 8. Zepeda-Gómez, S., Montano-Loza, A., Zapata-Colindres, JC. Vargas-Vorackova, F. Majluf-Cruz, A. Uscanga, L. (2008). Oral challenge with a methionine load in patients with inflammatory bowel disease: a better test to identify hyperhomocysteinemia. Inflamm. Bowel. Dis. 14(3), 383-388.10.1002/ibd.20307
  9. 9. Kang, SS., Wong, PWK., Malinow, MR. (1992). Hyperhomocyst(e)inemia as a risk factor for occlusive vascular disease. Ann. Rev. Nutr. 12, 279-298.10.1146/annurev.nu.12.070192.001431
  10. 10. Lentz, SR. (1997). Homocysteine and vascular disfunction. Life Sci. 61, 1205-1215.10.1016/S0024-3205(97)00392-5
  11. 11. Drzewoski, J., Gasiorowska, A., Malecka-Panas, E., Bald, E., Czupryniak, L. (2006). Plasma total homocysteine in the active stage of ulcerative colitis. J. Gastroenterol. Hepatol. 21, 739–743.10.1111/j.1440-1746.2006.04255.x16677162
  12. 12. Morgenstern, I., Raijmakers, MT., Peters, WH., Hoensch, H., Kirch, W. (2003). Homocysteine, cysteine, and glutathione in human colonic mucosa: elevated levels of homocysteine in patients with inflammatory bowel disease. Dig. Dis. Sci. 48(10), 2083-2090.10.1023/A:1026338812708
  13. 13. Danese, S., Semeraro, S., Papa, A., Roberto, I., Scaldaferri, F., Fedeli, G. et al. (2005). Extraintestinal manifestations in inflammatory bowel disease. World J. Gastroenterol. 11(46), 7227-7236.10.3748/wjg.v11.i46.7227472514216437620
  14. 14. Cosnes, J., Gower-Rousseau, C., Seksik, P., Cortot, A. (2011). Epidemiology and natural history of inflammatory bowel diseases. Gastroenterology 140, 1785-1794.10.1053/j.gastro.2011.01.05521530745
  15. 15. Kallel, L., Feki, M., Sekri, W., Segheir, L., Fekih, M., Boubaker, J. (2011). Prevalence and risk factors of hyperhomocysteinemia in Tunisian patients with Crohn’s disease. J. Crohns Colitis 5(2), 110-114.10.1016/j.crohns.2010.10.01021453879
  16. 16. Zezos, P., Kouklakis, G., Saibil, F. (2014). Inflammatory bowel disease and thromboembolism. World J. Gastroenterol. 20(38), 13863-13878.10.3748/wjg.v20.i38.13863419456825320522
  17. 17. Jiang, Y., Zhao, J., Xu, CL., Cao, SG., Lin, LM., Lei, Y et al. (2010). The relationship of methylenetetrahydrofolate reductase G1793A gene polymorphism, hyperhomocysteinaemia and ulcerative colitis. Zhonghua Nei. Ke. Za. Zhi. 49(8), 675-679.
  18. 18. Casella, G., Bassotti, G., Villanacci, V., Di Bella, C., Pagni, F., Corti, GL. (2011). Is hyperhomocysteinemia relevant in patients with celiac disease? World J. Gastroenterol. 17(24), 2941-2944.
  19. 19. Miller, JW., Beresford, SA., Neuhouser, ML., Cheng, TY., Song, X., Brown, EC. et al. (2013). Homocysteine, cysteine, and risk of incident colorectal cancer in the Women’s Health Initiative observational cohort. Am. J. Clin. Nutr. 97(4), 827-834.10.3945/ajcn.112.049932360765623426034
  20. 20. Peyrin-Biroulet, L., Guéant, JL. (2007). Does hyperhomocysteinemia contribute to gastric carcinogenesis in Helicobacter pylori infected patients? Gut. 56(10), 1480.
  21. 21. Phelip, JM., Ducros, V., Faucheron, JL., Flourie, B., Roblin, X. (2008). Association of hyperhomocysteinemia and folate deficiency with colon tumors in patients with inflammatory bowel disease. Inflamm. Bowel. Dis. 14(2), 242-248.10.1002/ibd.2030917941074
  22. 22. Bhattacharyya, A., Chattopadhyay, R., Mitra, S., Crowe, SE. (2014). Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol. Rev. 94(2), 329-354.10.1152/physrev.00040.2012404430024692350
  23. 23. Fonseca, VA., Stone, A., Munshi, M., Baliga, BS., Aljada, A., Thusu, K. et al. (1997). Oxidative stress in diabetic macrovascular disease: does homocysteine play a role? South Med. J. 90, 903–906.10.1097/00007611-199709000-000089305300
  24. 24. Matté, C., Scherer, EBS., Stefanello, FM., Barschak, AG., Vargas, CR., Netto, CA. et al. (2007). Concurrent folate treatment prevents Na+,K+-ATPase activity inhibition and memory impairments caused by chronic hyperhomocysteinemia during rat development. Int. J. Dev. Neurosci. 25, 545–552.10.1016/j.ijdevneu.2007.10.003
  25. 25. Ribeiro, G., Roehrs, M., Bairros, A., Moro, A., Charao, M., Araujo, F., Valentini, J., Arbo, M., Brucker, N., Moresco, R. et al. (2011). N-acetyl-cysteine on oxidative damage in diabetic rats. Drug Chem. Toxicol. 34, 467–474.10.3109/01480545.2011.564179
  26. 26. Kerksick, C., Willoughby, D. (2005). The Antioxidant Role of Glutathione and N-acetyl-cysteine Supplements and Exercise-Induced Oxidative Stress. J. Int. Soc. Sports Nutr. 9, 38–44.10.1186/1550-2783-2-2-38
  27. 27. McCully, KS. (2015). Homocysteine and the pathogenesis of atherosclerosis. Expert. Rev. Clin. Pharmacol. 8(2), 211-219.10.1586/17512433.2015.1010516
  28. 28. Sanchez-Roman, I., Gomez, A., Naudí, A., Jove, M., Gómez, J., Lopez-Torres, M, Pamplona, R., Barja, G. (2014). Independent and additive effects of atenolol and methionine restriction on lowering rat heart mitochondria oxidative stress. J. Bioenerg. Biomembr. 46(3), 159-172.10.1007/s10863-013-9535-7
  29. 29. Tappia, PS., Xu, YJ., Rodriguez-Leyva, D., Aroutiounova, N., Dhalla, NS. (2013). Cardioprotective effects of cysteine alone or in combination with taurine in diabetes. Physiol. Res. 62(2), 171-178.10.33549/physiolres.932388
  30. 30. Nosál’ová, V., Cerná, S., Bauer, V. (2000). Effect of N-acetylcysteine on colitis induced by acetic acid in rats. Gen. Pharmacol. 35(2), 77-81.10.1016/S0306-3623(01)00094-5
  31. 31. Uraz, S., Tahan, G., Aytekin, H., Tahan, V. (2013). N-acetylcysteine expresses powerful anti-inflammatory and antioxidant activities resulting in complete improvement of acetic acid-induced colitis in rats. Scand. J. Clin. Lab. Invest. 73(1), 61-66.10.3109/00365513.2012.73485923110331
  32. 32. Demiroren, K., Dogan, Y., Kocamaz, H., Ozercan, IH., Ilhan, S., Ustundag, B. et al. (2014). Protective effects of L-carnitine, N-acetylcysteine and genistein in an experimental model of liver fibrosis. Clin. Res. Hepatol. Gastroenterol. 38(1), 63-72.10.1016/j.clinre.2013.08.01424239319
  33. 33. Kuyumcu, A., Akyol, A., Buyuktuncer, Z., Ozmen, MM., Besler, HT. (2015). Improved oxidative status in major abdominal surgery patients after N-acetyl cystein supplementation. Nutr. J. 14, 4-15.10.1186/1475-2891-14-4432055125559659
  34. 34. Salim, AS. (1992). Role of sulfhydryl-containing agents in the healing of erosive gastritis and chronic gastric ulceration in the rat. J. Pharm. Sci. 81(1), 70-73.10.1002/jps.26008101141619573
  35. 35. Cao, YG., Chai, JG., Chen, YC., Zhao, J., Zhou, J., Shao, JP. et al. (2009). Beneficial effects of danshensu, an active component of Salvia miltiorrhiza, on homocysteine metabolism via the trans-sulphuration pathway in rats. Br. J. Pharmacol. 157(3), 482–490.10.1111/j.1476-5381.2009.00179.x270799419422396
  36. 36. Liapi, C., Zarros, A., Theocharis, S., Al-Humadi, H., Anifantaki, F., Gkrouzman, E. et al. (2009). The neuroprotective role of L-cysteine towards the effects of short-term exposure to lanthanum on the adult rat brain antioxidant status and the activities of acetylcholinesterase, (Na+,K+)- and Mg2+-ATPase. Biometals. 22(2), 329-335.10.1007/s10534-008-9169-018937033
  37. 37. Akbulut, S., Elbe, H., Eris, C., Dogan, Z., Toprak, G., Otan, E. et al. (2014). Cytoprotective effects of amifostine, ascorbic acid and N-acetylcysteine against methotrexate-induced hepatotoxicity in rats. World. J. Gastroenterol. 20(29), 10158-10165.10.3748/wjg.v20.i29.10158412334625110444
  38. 38. Drazic, A., Winter, J. (2014). The physiological role of reversible methionine oxidation. Biochim. Biophys. Acta. 1844(8), 1367-1382.10.1016/j.bbapap.2014.01.00124418392
  39. 39. Kim, G., Weiss, SJ., Levine, RL. (2014). Methionine oxidation and reduction in proteins. Biochim. Biophys. Actan. 1840(2), 901-905.10.1016/j.bbagen.2013.04.038376649123648414
  40. 40. Kluge H, Gessner DK, Herzog E, Eder K (2015) Efficacy of DL-methionine hydroxy analogue-free acid in comparison to DL-methionine in growing male white Pekin ducks. Poult Sci pii: pev355 (Epub ahead of print) PMID:26706358
  41. 41. Elshorbagy, AK., Valdivia-Garcia, M., Mattocks, DA., Plummer, JD., Orentreich, DS., Orentreich, N., Refsum, H., Perrone, CE. (2013). Effect of taurine and N-acetyl-cysteine on methionine restriction-mediated adiposity resistance. Metabolism. 62(4), 509-517.10.1016/j.metabol.2012.10.00523154184
  42. 42. Rushworth, GF., Megson, IL. (2014). Existing and potential therapeutic uses for N-acetylcysteine: The need for conversion to intracellular glutathione for antioxidant benefits. Pharmacol. Ther. 141, 150–159.10.1016/j.pharmthera.2013.09.00624080471
  43. 43. Särnstrand, B., Jansson, AH., Matuseviciene, G., Scheynius, A., Pierrou, S., Bergstrand, H. (1999). N,N’-Diacetyl-L-cystine-the disulfide dimer of N-acetyl-cysteine-is a potent modulator of contact sensitivity/delayed type hypersensitivity reactions in rodents. J. Pharmacol. Exp. Ther. 288(3), 1174-1184.
  44. 44. Swennen, Q., Geraert, PA., Mercier, Y., Everaert, N., Stinckens, A., Willemsen, H., Li, Y., Decuypere, E., Buyse, J. (2011). Effects of dietary protein content and 2-hydroxy-4-methylthiobutanoic acid or DL-methionine supplementation on performance and oxidative status of broiler chickens. Br. J. Nutr. 106(12), 1845-1854.10.1017/S000711451100255821736775
  45. 45. Meng, B., Gao, W., Wei, J., Pu, L., Tang, Z., Guo, C. (2015). Quercetin Increases Hepatic Homocysteine Remethylation and Transsulfuration in Rats Fed a Methionine-Enriched Diet. Biomed. Res. Int. 24, 35-41.10.1155/2015/815210462900126558284
  46. 46. Harper, AE., Beneveng, NJ., Wohlhuet, RM. (1970). Effects of ingestion of disproportionate amounts of amino acids. Physiol. Rev. 50, 428.10.1152/physrev.1970.50.3.4284912906
  47. 47. Cole, NW., Weaver, KR., Walcher, BN., Adams, ZF., Miller, RR. (2008). Hyperglycemia-induced membrane lipid peroxidation and elevated homocysteine levels are poorly attenuated by exogenous folate in embryonic chick brains. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 150(3), 338-343.10.1016/j.cbpb.2008.04.00218486511
  48. 48. Manna, P., Das, J., Sil, PC. (2013). Role of sulfur containing amino acids as an adjuvant therapy in the prevention of diabetes and its associated complications. Curr. Diabetes. 9(3), 237-248.10.2174/157339981130903000523547683
  49. 49. De Andrade, KQ., Moura, FA., Dos Santos, JM., de Araújo, OR., de Farias Santos, JC., Goulart, MO. (2015). Oxidative Stress and Inflammation in Hepatic Diseases: Therapeutic Possibilities of N-Acetylcysteine. Int. J. Mol. Sci. 16(12), 30269-30308.10.3390/ijms161226225469116726694382
  50. 50. Channon, HJ., Manifold, MC., Platt, AP. (1938). The action of cystine and methionine on liver fat deposition. Biochem. J. 32(6), 969-975.10.1042/bj0320969126413716746722
  51. 51. Earle, DP., Smull, K., Victor, J. (1942). Effects of excess dietary cysteic acid, dl-methionine, and taurine on the rat liver. J. Exp. Med. 76(4), 317-324.10.1084/jem.76.4.317213531619871239
  52. 52. Roediger, WE., Duncan, A., Kapaniris, O., Millard, S. (1993). Sulphide impairment of substrate oxidation in rat colonocytes: a biochemical basis for ulcerative colitis? Clin. Sci. 85(5), 623-627.
  53. 53. Halliwell, B. (2015). Free Radicals and Other Reactive Species in Disease. eLS. 1–9.10.1002/9780470015902.a0002269.pub3
  54. 54. Pang, X., Liu, J., Zhao, J., Mao, J., Zhang, X., Feng, L., Han, C., Li, M., Wang, S., Wu, D. (2014). Homocysteine induces the expression of C-reactive protein via NMDAr-ROS-MAPK-NF-κB signal pathway in rat vascular smooth muscle cells. Atherosclerosis 236(1), 73-81.10.1016/j.atherosclerosis.2014.06.02125016361
  55. 55. Baggott, JE., Tamura, T. (2015). Homocysteine, iron and cardiovascular disease: a hypothesis. Nutrients 7(2), 1108-1118.10.3390/nu7021108434457825668155
  56. 56. Lee, HJ., Choi, JS., Lee, HJ., Kim, WH., Park, SI., Song, J. (2015). Effect of excess iron on oxidative stress and gluconeogenesis through hepcidin during mitochondrial dysfunction. J. Nutr. Biochem. 26(12), 1414-1423.10.1016/j.jnutbio.2015.07.00826383538
DOI: https://doi.org/10.1515/sjecr-2016-0017 | Journal eISSN: 2956-2090 | Journal ISSN: 2956-0454
Language: English
Page range: 215 - 224
Submitted on: Feb 9, 2016
Accepted on: Feb 12, 2016
Published on: Sep 24, 2016
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2016 Zarko Micovic, Aleksandra Stamenkovic, Tamara Nikolic, Marija Stojanovic, Ljiljana Scepanovic, Adi Hadzibegovic, Radmila Obrenovic, Ivana Vujosevic, Sanja Stankovic, Marko Djuric, Biljana Jakovljevic, Dragan Djuric, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.