Have a personal or library account? Click to login
Mechanisms of Intracellular Chlamydiae Survival Cover

References

  1. 1. Tomanović S, Đukić S. (2011). Classical and molekular methodes for diagnosis of Chlamydia trachomatis infections. Med Pregl. LXIV(9-10), 477-480.10.2298/MPNS1110477T
  2. 2. Mascellino MT, Priscilla B, Andliva AO. (2011). Immunopathogenesis in Chlamydia trachomatis Infected Women. ISRN Obstetrics and Gynecology. ID 436935.10.5402/2011/436936
  3. 3. Uzunović-Kamberović S. (2009). Medical Microbiology. Pressroom Fojnica d.o.o. Fojnica.
  4. 4. Welch D. (1990). Detection of plasmid DNA from all Chlamydia trachomatis serovars with a two-step polymerase chain reaction. Apll Environ Microbiol. 8:2494-2498.
  5. 5. Carlson JH, Whit mire WM, Crane DD, Wicke L, Virtaneva K, Sturdevant DE, Kupko JJ 3rd, Porcella SF, Martinez-Orengo N, Heinzen RA, Kari L, Caldwell HD. (2008). The Chlamydia trachomatis plasmid is a transcriptional regulator of chromosomal genes and a virulence factor. Infect Immun. 76: 227310.1128/IAI.00102-08
  6. 6. Hagan RJ, Mathews SA, Mukhopadhyay S, Summersgil JT and Timms P. (2004). Chlamydial persistence: beyond the biphasic paradigm. Infect. Immun. 7(4), 1843-1855.10.1128/IAI.72.4.1843-1855.2004
  7. 7. Vivoda M, Cirkovic I, Đukic S. (2011). Biology and intracellulare life of Chlamydia. Med Pregl. LXIV(11-12), 561-564.10.2298/MPNS1112561V
  8. 8. Essig A. Chlamydia and Chlamydophila. In U: Murray PR, Baron EJ, Jorgensen JH, Landry ML, Pfaller MA. (2007). Manual of clinical microbiology.Washington, DC: American Society for Microbiology; 2007:1021-35.
  9. 9. Fadel S, Eley A. (2007). Chlamydia trachomatis OmcB protein is a surface-exposed glycosaminoglycan-dapendent adhesion. J. Med Microbiol. 65:15-22.
  10. 10. Lutter EI, Martens C, Hackstadt T. (2012). Evolution and conservation of predicted inclusion membrane proteins in chlamydiae. Comp Funct Genomics. 2012:36210410.1155/2012/362104
  11. 11. Zhang JP, Stephens RS. (1992). Mechanism of Chlamydia trachomatis attachment to eukaryotic host cells. Cell. 69: 861-869.
  12. 12. Galan JE, Lara-Tejero M, Marlovits TC , Wagner S. (2014). Bacterial type III secretion systems: specialised nanomachines for protein delivery into target cells Annu Rev Microbiol. 68:415-438.
  13. 13. Mabey DC, Solomon AW, Foster A. (2003). Trachoma. Lancet. 362:223-22910.1016/S0140-6736(03)13914-1
  14. 14. Đukić S, Nedeljković M, Pervulov M et al. (1996). Prevalence of Chlamydia trachomatis antibodies in cord blood. Infect Dis Obstet Gynecol. 4:114-5.
  15. 15. Mpiga P, Ravaoarinoro M. (2006). Chlamydia trachomatis persistence: An update. Microbiologicyl Research. 9-19.10.1016/j.micres.2005.04.00416338585
  16. 16. Molleken K, Schmidt E, Hegemann JH. (2010). Members of the Pmp protein family of Chlamydia pneumoniae media teadhesion to human cells via short repetitive peptidemotifs. Mol Microbiol. 78: 1004-1017.
  17. 17. Dautry-Varsat A, Subtil A, Hackstadt T. (2005). Recent insights into the mechanisms of Chlamydia entry. Cell Microbiol. 7:1714-1722.
  18. 18. Abromaitis S, Stephens RS. (2009). Attachment and entry of Chlamydia have distinct requirements for host protein disulfide isomerase. PLoS Pathog. 5: e100035710.1371/journal.ppat.1000357265571619343202
  19. 19. Lane B, Mutchler C, Al Khodor S, Grieschaber S, Carabeo R. (2008). Chlamydial entry involves TARP binding of guanine nucleotide exchange factors PLoS Pathog. 4 p. e1000014.
  20. 20. Jewett TJ, Fischer ER, Mead DJ, Hackstadt T. (2006). Chlamydial TARP is a bacterial nucleator of actin Proc Natl Acad Sci U S A, 103:15599-15604.10.1073/pnas.0603044103162286817028176
  21. 21. Rzomp KA, Scholtes LD, Briggs BJ, Whittaker GR, Scidmore MA. (2003). Rab GTPases are recruited to chlamydial inclusions in both a species-dependent and species-independent manner. Infect Immun. 71:5855-5870.
  22. 22. Hackstadt T. (2000). Rediretion of host vesicle trafficking pathways by intracellular parasites. Traffic. 1: 93-9910.1034/j.1600-0854.2000.010201.x11208089
  23. 23. Cocchiaro J L, Valdivida R H. (2009). New insights into Chlamydia intracellular survival mechanisms Cell Microbiol. 11:1571-1578.
  24. 24. Carabeo R. (2011). Bacterial subversion of host actin dynamics at the plasma membrane. Cell Microbiol. 13: 1460-1469.
  25. 25. Scidmore MA. (2011). Recent advances in Chlamydia subversion of host cytoskeletal and membrane trafficking pathways. Microbes Infect. 13: 527-535.
  26. 26. Carabeo R A, Grieschaber S S, Hasenkrug A, Dooley C, Hackstadt T. (2004). Requirement for the Rac GTPase in Chlamydia trachomatis invasion of non-phagocytic cells Traffic. 5:418-425.
  27. 27. Carabeo RA, Dooley CA, Grieshaber SS, Hackstadt T. (2007). Rac interacts with Abi-1 and WAVE2 to promote an Arp2/3-dependent actin recruitment during chlamydial invasion. Cell Microbiol. 9:2278-228810.1111/j.1462-5822.2007.00958.x17501982
  28. 28. Schramm N, Bagnell CR, Wyrick PB (1996). Vesicles containing Chlamydia trachomatis serovar L2 remain above pH 6 within HEC-1B cells. Infect Immun. 64:1208-121410.1128/iai.64.4.1208-1214.19961739058606080
  29. 29. Grieshaber SS, Grieshaber NA, Miller N and Hackstadt T. (2006). Chlamydia trachomatis causes centrosomal defects resulting in chromosomal segregation abnormalities. Traffic. 7:940-949.
  30. 30. Jewett TJ, Dooley CA, Mead DJ, Hackstadt T. (2008). Chlamydia trachomatis tarp is phosphorylated by src family tyrosine kinases. Biochem Biophys Res Commun. 371:339-344.
  31. 31. Bastidas RJ, Elwell CA, Engel JN and Raphael H. (2013). Valdivia Chlamydial Intracellular Survival Strategies. Cold Spring Harb Perspect Med. doi: 10.1101/cshperspect. a010256.
  32. 32. Wallin KL, Wiklund F, Luostarinen T, Angstrom T, Anttila T, Bergman F et al. (2002). A population-based prospectivestudy of Chlamydia trachomatis infection and cervical carcinoma. Int J Cancer J. 101:371-374.
  33. 33. Carabeo RA, Mead DJ, Hackstadt T. (2003). Golgidependent transport of cholesterol to the Chlamydia trachomatis inclusion. Proc Natl Acad Sci. 100: 6771-6776.
  34. 34. Elwell CA, Jiang S, Kim JH, Lee A, Wittmann T, Hanada K, Melancon P, Engel JN. (2011). Chlamydia trachomatis co-opts GBF1 and CERT to acquire host sphingomyelin for distinct roles during intracellular development. PLoS Pathog. 7: e1002198.
  35. 35. Derre I, Swiss R, Agaisse H. (2011). The lipid transfer protein CERT interacts with the Chlamydia inclusion protein IncD and participates to ER-Chlamydia inclusion membrane contact sites. PLoS Pathog. 7: e1002092.
  36. 36. Su H, McClarty G, Dong F, Hatch GM, Pan ZK, Zhong G. (2004). Activation of Raf/MEK/ERK/cPLA2 signaling pathway is essential for chlamydial acquisition of host glycerophospholipids. J Biol Chem. 279: 9409-9416.
  37. 37. Thwaites T, Nogueira A, Campeotto I, Silva A, Grieshaber SS, Carabeo RA. The Chlamydia Effector TarP Mimics the Mammalian Leucine-Aspartic Acid Motif of Paxillin to Subvert the Focal Adhesion Kinase during Invasion.J Biol Chem. 289(44): 30426-30442.10.1074/jbc.M114.604876421522625193659
  38. 38. Cocchiaro JL, Kumar Y, Fischer ER, Hackstadt T, Valdivia RH. (2008). Cytoplasmic lipid droplets are translocated into the lumen of the Chlamydia trachomatis parasitophorous vacuole. Proc Natl Acad Sci. 105:9379-9384.
  39. 39. Kumar Y, Cocchiaro J, Valdivia RH. (2006). The obligate intracellular pathogen Chlamydia trachomatis targets host lipid droplets. Curr Biol. 16:1646-1651.
  40. 40. Friedrich N, Hagedorn M, Soldati-Favre D, Soldati T. (2012). Prison break: pathogens’ strategies to egress from host cells. Microbiol Mol Biol Rev. 76:707-720.
  41. 41. Hybiske K, Stephens RS. (2008). Exit strategies of intracellular pathogens. Nat Rev Microbiol. 6:99-110.
  42. 42. Hybiske K, Stephens RS (2007). Mechanisms of host cell exit by the intracellular bacterium Chlamydia. Proc Natl Acad Sci U S A. 104:11430-1143510.1073/pnas.0703218104204091517592133
  43. 43. Chin E, Kirker K, Zuck M, James G, Hybiske K. (2012). Actin recruitment to the Chlamydia inclusion is spatiotemporally regulated by a mechanism that requires host and bacterial factors. PLoS ONE. 7:e46949.
  44. 44. Ingalls RR, Rice PA, Qureshi N, Takayama K, Lin JS, Golenbock DT. (1995). The inflammatory cytokine response to Chlamydia trachomatis infection is endotoxin mediated. Infect Immun. 63:3125-3130.
  45. 45. Prebeck S, Kirschning C, Durr S, da Costa C, Donath B, Brand K, Redecke V, Wagner H, Miethke T. (2001). Predominant role of toll-like receptor 2 versus 4 in Chlamydia pneumoniae-induced activation of dendritic cells. J Immunol. 167:3316-3323.
  46. 46. Prebeck S, Brade H, Kirschning CJ, da Costa CP, Durr S, Wagner H, Miethke T. (2003). The Gram-negative bacterium Chlamydia trachomatis L2 stimulates tumor necrosis factor secretion by innate immune cells independently of its endotoxin. Microbes Infect. 5: 463-470.
  47. 47. Heine H, Muller-Loennies S, Brade L, Lindner B, and Brade H. (2003). Eur. J. Biochem. 270:440-450.
  48. 48. Bulut Y, Shimada K, Wong MH, Chen S, Gray P, Alsabeh R, Doherty TM, Crother TR, Arditi M. (2009). Chlamydial heat shock protein 60 induces acute pulmonary inflammation in mice via the Toll-like receptor 4- and MyD88-dependent pathway. Infect Immun. 77: 2683-2690.
  49. 49. Fichorova RN, Cronin AO, Lien E, Anderson DJ, Ingalls RR (2002). J. Immunol. 168:2424-2432.
  50. 50. Joyee AG, Yang X. (2008). Role of toll-like receptors in immune responses to chlamydial infections. Curr Pharm Des. 14(6):593-600.
  51. 51. Ying S, Fischer SF, Pettengill M, Conte D, Paschen SA, Ojcius DM, Hacker G. (2006). Characterization of host cell death induced by Chlamydia trachomatis. Infect Immun. 74:6057-606628.
  52. 52. Hacker G, Weber A. (2007). BH3-only proteins trigger cytochrome c release, but how? Arch Biochem Biophys. 462:150-155.
  53. 53. Paschen SA, Christian JG, Vier J, Schmidt F, Walch A, Ojcius DM, Hacker G. (2008). Cytopathicity of Chlamydia is largely reproduced by expression of a single chlamydial protease. J Cell Biol. 182:117-125.
  54. 54. Rajalingam K, Sharma M, Paland N, Hurwitz R, Thieck O, Oswald M, et al. (2006). IAP-IAP complexes required for apoptosis resistance of C. trachomatis-infected cells. PLoS Pathog. 2:e114
  55. 55. Tse SM, Mason D, Botelho RJ, Chiu B, Reyland M, Hanada K, et al. (2005). Accumulation of diacylglycerol in the Chlamydia inclusion vacuole: possible role in the inhibition of host cell apoptosis. J Biol Chem. 280:25210-25215.
  56. 56. Verbeke P, Welter-Stahl L, Ying S, Hansen J, Hacker G, Darville T, Ojcius DM. (2006). Recruitment of BAD by the Chlamydia trachomatis vacuole correlates with host-cell survival. PLoS Pathog. 2:e45.
  57. 57. Rajalingam K, Sharma M, Lohmann C, Oswald M, Thieck O, Froelich CJ, Rudel T. (2008). Mcl-1 is a key regulator of apoptosis resistance in Chlamydia trachomatis- infected cells. PLoS ONE. 3:e3102.
  58. 58. Buchholz KR, Stephens RS. (2007). The extracellular signal-regulated kinase/mitogen-activated protein kinase pathway induces the inflammatory factor interleukin-8 following Chlamydia trachomatis infection. Infect Immun. 75:5924-5929.
  59. 59. Lad SP, Li J, da Silva Correia J, Pan Q, Gadwal S, Ulevitch RJ, Li E. (2007). Cleavage of p65/RelA of the NFkappaB pathway by Chlamydia. Proc Natl Acad Sci U S A. 104:2933-2938.
  60. 60. Cocchiaro JL, Valdivia RH. (2009). New insight into Chlamydia intracellular survival mechanisms. Cell Microbiol. 11(11):1571-1578.
  61. 61. Christian J, Vier J, Paschen SA, Hacker G. (2010). Cleavage of the NF-κB family protein p65/RelA by the chlamydial protease-like activity factor (CPAF) impairs proinflammatory signaling in cells infected with Chlamydiae. J Biol Chem. 285:41320-41327.
  62. 62. Sun SC, Ley SC. (2008). New insights into NFkappaB regulation and function. Trends Immunol. 29:469-478.
  63. 63. Negrate G, Krieg A, Faustin B, Loeffler M, Godzik A, Krajewski S, Reed JC. (2008). ChlaDub1 of Chlamydia trachomatis suppresses NF-kB activation and inhibits IkBa ubiquitination and degradation. Cellular Microbiology. 10:1879-1892.
  64. 64. Zhong G. (2011). Chlamydia trachomatis secretion of proteases for manipulating host signaling pathways. Front Microbiol. 2:14.
  65. 65. Chen AL, Johnson KA, Lee JK, Sutterlin C, Tan M. (2012). CPAF: A chlamydial protease in search of an authentic substrate. PLoS Pathog. 8: e1002842.
DOI: https://doi.org/10.1515/sjecr-2016-0010 | Journal eISSN: 2956-2090 | Journal ISSN: 2956-0454
Language: English
Page range: 145 - 152
Submitted on: Dec 28, 2015
Accepted on: Jan 9, 2016
Published on: Jun 10, 2016
Published by: University of Kragujevac, Faculty of Medical Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Ruzica Lukic, Bojana Lukovic, Nevena Gajovic, Slava Prljic, Slobodanka Djukic, published by University of Kragujevac, Faculty of Medical Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.