Have a personal or library account? Click to login
Stem Cells: New Hope For Spinal Cord Injury Cover

References

  1. 1. Volarevic V, Erceg S, Bhattacharya SS, Stojkovic P, Horner P, Stojkovic M. Stem Cell-Based Therapy for Spinal Cord Injury. Cell Transplantation 2013; 22(8):1309-23.10.3727/096368912X657260
  2. 2. Lukovic D, Moreno Manzano V, Stojkovic M, Bhattacharya SS, Erceg S. Concise review: human pluripotent stem cells in the treatment of spinal cord injury. Stem Cells 2012; 30(9):1787-92.10.1002/stem.1159
  3. 3. Rowland JW, Hawryluk GW, Kwon B, Fehlings MG. Current status of acute spinal cord injury pathophysiology and emerging therapies: Promise on the horizon. Neurosurg. Focus 2008; 25:E2.10.3171/FOC.2008.25.11.E2
  4. 4. McTigue DM, Tani M, Krivacic K et al. Selective chemokine mRNA accumulation in the rat spinal cord after contusion injury. J Neurosci Res 1998;53:368–376.10.1002/(SICI)1097-4547(19980801)53:3<;368::AID-JNR11>3.0.CO;2-1
  5. 5. Grossman SD, Rosenberg LJ, Wrathall JR. Temporal-spatial pattern of acute neuronal and glial loss after spinal cord contusion. Exp Neurol 2001;168:273–282.10.1006/exnr.2001.7628
  6. 6. Erceg S, Ronaghi M, Stojković M. Human embryonic stem cell differentiation toward regional specific neural precursors. Stem Cells 2009. 27(1):78-87.10.1634/stemcells.2008-0543
  7. 7. Erceg S, Ronaghi M, Oria M, et al. Transplanted oligodendrocytes and motoneuron progenitors generated from human embryonic stem cells promote locomotor recovery after spinal cord transection. Stem Cells 2010; 28:1541–1549.10.1002/stem.489
  8. 8. Nistor GI, Totoiu MO, Haque N, Carpenter MK, Keirstead HS. Human embryonic stem cells differentiate into oligodendrocytes in high purity and myelinate after spinal cord transplantation. Glia 2005; 49:385–396.10.1002/glia.20127
  9. 9. Mothe AJ, Tator CH. Advances in stem cell therapy for spinal cord injury. J Clin Invest. 2012; 122(11):3824-34.10.1172/JCI64124
  10. 10. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126:663–676.10.1016/j.cell.2006.07.024
  11. 11. Lukovic D, Moreno-Manzano V, Klabusay M, Stojkovic M, Bhattacharya SS, Erceg S. Non-coding RNAs in pluripotency and neural differentiation of human pluripotent stem cells. Front Genet. 2014; 14;5:132.10.3389/fgene.2014.00132403019524860598
  12. 12. Warren L, Manos PD, Ahfeldt T, et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 2010; 7:618–630.10.1016/j.stem.2010.08.012365682120888316
  13. 13. Zhou H, Wu S, Joo JY, et al. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem cell 2009; 4:381–384.10.1016/j.stem.2009.04.00519398399
  14. 14. Tsuji O, Miura K, Okada Y, et al. Therapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injury. Proc Natl Acad Sci USA 2010; 107:12704–12709.10.1073/pnas.0910106107290654820615974
  15. 15. Nori S, Okada Y, Yasuda A, et al. Grafted human-induced pluripotent stem-cell-derived neurospheres promote motor functional recovery after spinal cord injury in mice. Proc Natl Acad Sci USA 2011;108: 16825–16830.10.1073/pnas.1108077108318901821949375
  16. 16. Volarevic V, Al-Qahtani A, Arsenijevic N, et al. Interleukin-1 receptor antagonist (IL-1Ra) and IL-1Ra producing mesenchymal stem cells as modulators of diabetogenesis. Autoimmunity 2010; 43: 255–63.10.3109/0891693090330564119845478
  17. 17. Hawryluk GW, Mothe AJ, Chamankhah M, Wang J, Tator C, Fehlings MG. In vitro characterization of trophic factor expression in neural precursor cells. Stem Cells Dev. 2012; 21(3):432–447.10.1089/scd.2011.024222013972
  18. 18. Himes BT, Neuhuber B, Coleman C et al. Recovery of function following grafting of human bone marrowderived stromal cells into the injured spinal cord. Neurorehabil Neural Repair 2006; 20(2):278–296.10.1177/154596830628697616679505
  19. 19. Hawryluk GW, Mothe A, Wang J, Wang S, Tator C, Fehlings MG. An in vivo characterization of trophic factor production following neural precursor cell or bone marrow stromal cell transplantation for spinal cord injury. Stem Cells Dev. 2012; 21(12):2222–2238.10.1089/scd.2011.0596341136122085254
  20. 20. Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem. 2006; 98(5):1076–1084.10.1002/jcb.2088616619257
  21. 21. Ruff CA, Wilcox JT, Fehlings MG. Cell-based transplantation strategies to promote plasticity following spinal cord injury. Exp. Neurol. 2012; 235:78–90.
  22. 22. Kim HJ, Lee HJ, Kim SH. Therapeutic effects of human mesenchymal stem cells on traumatic brain injury in rats: Secretion of neurotrophic factors and inhibition of apoptosis. J. Neurotrauma 2010; 27:131–138.10.1089/neu.2008.081819508155
  23. 23. Sasaki M, Radtke C, Tan AM, et al. BDNF hypersecreting human mesenchymal stem cells promote functional recovery, axonal sprouting, and protection of corticospinal neurons after spinal cord injury. J. Neurosci. 2009; 29:14932–14941.10.1523/JNEUROSCI.2769-09.2009282527619940189
  24. 24. Martinez AM, Goulart CO, Ramalho Bdos S, Oliveira JT, Almeida FM. Neurotrauma and mesenchymal stem cells treatment: From experimental studies to clinical trials. World J Stem Cells 2014; 6(2):179-94.10.4252/wjsc.v6.i2.179399977624772245
  25. 25. Li J, Lepski G. Cell transplantation for spinal cord injury: a systematic review. Biomed Res Int. 2013; 2013:786475.10.1155/2013/786475358124623484157
  26. 26. Syková E, Homola A, Mazanec R, et al. Autologous bone marrow transplantation in patients with subacute and chronic spinal cord injury. Cell Transplant. 2006; 15:675–687.10.3727/00000000678346438117269439
  27. 27. Yoon SH, Shim YS, Park YH, et al. Complete spinal cord injury treatment using autologous bone marrow cell transplantation and bone marrow stimulation with granulocyte macrophage-colony stimulating factor: phase I/II clinical trial. Stem Cells 2007; 25:2066–2073.10.1634/stemcells.2006-080717464087
  28. 28. Chernykh ER, Stupak VV, Muradov GM, et al. Application of autologous bone marrow stem cells in the therapy of spinal cord injury patients. Bull. Exp. Biol. Med. 2007; 143:543–547.
  29. 29. Kumar A, Kumar S, Narayanan R, Arul K, Baskaran M. Autologous bone marrow derived mononuclear cell therapy for spinal cord injury: A phase I/II clinical safety and primary efficacy data. Exp. Clin. Transplant. 2009; 7:241– 248.
  30. 30. Callera F, do Nascimento RX. Delivery of autologous bone marrow precursor cells into the spinal cord via lumbar puncture technique in patients with spinal cord injury: A preliminary safety study. Exp. Hematol. 2006; 34:130–13.
  31. 31. Cristante AF, Barros-Filho TE, Tatsui N, et al. Stem cells in the treatment of chronic spinal cord injury: Evaluation of somatosensitive evoked potentials in 39 patients. Spinal Cord 2009; 47:733–738.10.1038/sc.2009.2419333245
  32. 32. Deda H, Inci MC, Kürekçi AE, et al. Treatment of chronic spinal cord injured patients with autologous bone marrowderived hematopoietic stem cell transplantation: 1-year follow-up. Cytotherapy 2008; 10:565–574.10.1080/1465324080224179718615345
  33. 33. Rao YJ, Zhu WX, Du ZQ, et al. Effectiveness of olfactory ensheathing cell transplantation for treatment of spinal cord injury. Genet Mol Res. 2014; 13(2):4124-9.10.4238/2014.May.30.724938704
  34. 34. García-Alias G, Lopez-Vales R, Fores J, Navarro X, Verdu E. Acute transplantation of olfactory ensheathing cells or Schwann cells promotes recovery after spinal cord injury in the rat. J. Neurosci. Res. 2004; 75:632–641.
  35. 35. Kubasak MD, Jindrich DL, Zhong H, et al. OEG implantation and step training enhance hindlimb-stepping ability in adult spinal transected rats. Brain 2008; 131:264–276.10.1093/brain/awm267291674118056162
  36. 36. Munoz-Quiles C, Santos-Benito FF, Llamusí MB, Ramon-Cueto A. Chronic spinal injury repair by olfactory bulb ensheathing glia and feasibility for autologous therapy. J. Neuropathol. Exp. Neurol. 2009; 68:1294–1308.
  37. 37. Radtke C, Sasaki M, Lankford KL, Vogt PM, Kocsis JD. Potential of olfactory ensheathing cells for cell-based therapy in spinal cord injury. J. Rehabil. Res. Dev. 2008; 45:141–151.
  38. 38. Ramon-Cueto A, Cordero MI, Santos-Benito FF, Avila J. Functional recovery of paraplegic rats and motor axon regeneration in their spinal cords by olfactory ensheathing glia. Neuron 2000; 25:425–435.10.1016/S0896-6273(00)80905-8
  39. 39. Woodhall E, West AK, Chuah MI. Cultured olfactory ensheathing cells express nerve growth factor, brain-derived neurotrophic factor, glia cell line-derived neurotrophic factor and their receptors. Brain Res Mol Brain Res. 2001; 88(1-2):203-13.10.1016/S0169-328X(01)00044-4
  40. 40. Mayeur A, Duclos C, Honoré A, et al. Potential of olfactory ensheathing cells from different sources for spinal cord repair. PLoS One 2013; 8(4):e62860.10.1371/journal.pone.0062860363474423638158
  41. 41. Feron F, Perry C, Cochrane J, et al. Autologous olfactory ensheathing cell transplantation in human spinal cord injury. Brain 2005; 128:2951–2960.10.1093/brain/awh65716219671
  42. 42. Mackay-Sim A, Feron F, Cochrane J, et al. Autologous olfactory ensheathing cell transplantation in human paraplegia: a 3-year clinical trial. Brain 2008; 131:2376–2386.10.1093/brain/awn173252544718689435
  43. 43. Lima C, Pratas-Vital J, Escada P, Hasse-Ferreira A, Capucho C, Peduzzi JD. Olfactory mucosa autografts in human spinal cord injury: A pilot clinical study. J. Spinal Cord Med 2006; 29:191–203.10.1080/10790268.2006.11753874186481116859223
  44. 44. Tabakow P, Jarmundowicz W, Czapiga B, et al. Transplantation of autologous olfactory ensheathing cells in complete human spinal cord injury. Cell Transplant. 2013; 22(9):1591-612.10.3727/096368912X66353224007776
  45. 45. Zheng Z, Liu G, Chen Y, Wei S. Olfactory ensheathing cell transplantation improves sympathetic skin responses in chronic spinal cord injury. Neural Regen Res. 2013; 8(30):2849-55.
  46. 46. Hsu YC, Lee DC, Chiu IM. Neural stem cells, neural progenitors, and neurotrophic factors. Cell Transplant. 2007; 16:133–150.10.3727/000000007783464678
  47. 47. Moreno-Manzano V, Rodríguez-Jiménez, FJ, García-Roselló M, et al. Activated spinal cord ependymal stem cells rescue neurological function. Stem Cells 2009; 27:733–743.10.1002/stem.2419259940
  48. 48. Barnabe´-Heider F, Frisen J. Stem cells for spinal cord repair. Cell Stem Cell 2008; 3:16–24.10.1016/j.stem.2008.06.01118593555
  49. 49. Ronaghi M, Erceg S, Moreno-Manzano V, Stojkovic M. Challenges of stem cell therapy for spinal cord injury: human embryonic stem cells, endogenous neural stem cells, or induced pluripotent stem cells? Stem Cells 2010; 28(1):93-9.
  50. 50. Iwanami A, Kaneko S, Nakamura M, et al. Transplantation of human neural stem cells for spinal cord injury in primates. J. Neurosci. Res. 2005; 80:182–190.
  51. 51. Parr A. M, Kulbatski I, Zahir T, et al. (2008). Transplanted adult spinal cordderived neural stem/progenitor cells promote early functional recovery after rat spinal cord injury. Neuroscience 155:760–770.
DOI: https://doi.org/10.1515/sjecr-2015-0001 | Journal eISSN: 2956-2090 | Journal ISSN: 2956-0454
Language: English
Page range: 3 - 8
Submitted on: Sep 30, 2014
|
Accepted on: Oct 12, 2014
|
Published on: Apr 4, 2015
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 Marina Gazdic, Vladislav Volarevic, Miodrag Stojkovic, published by University of Kragujevac, Faculty of Medical Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.