Have a personal or library account? Click to login

The Use of Asymptotic Functions for Determining Empirical Values of CN Parameter in Selected Catchments of Variable Land Cover

Open Access
|Feb 2018

References

  1. [1] Ajmal M., Waseem M., Wi S., Kim T.-W., Evolution of a parsimonious rainfall–runoff model using soil moisture proxies. J. of Hydrology, 2015, 530, 623–633.10.1016/j.jhydrol.2015.10.019
  2. [2] Baltas E.A., Dervos N.A., Mimikou M.A., Technical Note: Determination of the SCS initial abstraction ratio in an experimental watershed in Greece, Hydrol. Earth Syst. Sci., 2007, 11, 1825–1829.10.5194/hess-11-1825-2007
  3. [3] Banasik K., Woodward D.E., Empirical determination of runoff Curve Number for a small agriculture catchment in Poland, Proceedings of the 2nd Joint Federal Interagency Conference, Las Vegas, NV, USA, 27 June–1 July 2010.
  4. [4] Banasik K., Rutkowska A., Kohnová S., Retention and Curve Number Variability in a Small Agricultural Catchment: The Probabilistic Approach, Water, 2014a, 6, 1118–1133.10.3390/w6051118
  5. [5] Banasik K., Krajewski A., Sikorska A., Hejduk L., Curve Number estimation for a small urban catchment from recorded rainfall-runoff events, Archives of Environmental Protection, 2014b, 40(3), 75–86.10.2478/aep-2014-0032
  6. [6] Chauhan M.S., Kumar V., Rahul A.K., Modelling and quantifying water use efficiency for irrigation project and water supply at large scale, Int. J. Adv. Sci. Tech. Res., 2013, 3, 617–639.
  7. [7] Chen C.L., An evaluation of the mathematics and physical significance of the Soil Conservation Service curve number procedure for estimating runoff volume, Proc., Int. Symp. on Rainfall-Runoff Modeling, Water Resources Publ., Littleton, Colo., 1982, 387–418.
  8. [8] Deshmukh D.S., Chaube U.C., Hailu A.E., Gudeta D.A., Kassa M.T., Estimation and comparison of curve numbers based on dynamic land use land cover change, observed rainfall-runoff data and land slope, J. Hydrol., 2013, 492, 89–101.10.1016/j.jhydrol.2013.04.001
  9. [9] De Paola F., Ranucci A., Feo A., Antecedent moisture condition (SCS) frequency assessment: A case study in southern Italy, Irrig. Drain., 2013, 62, 61–71.10.1002/ird.1801
  10. [10] Epps T.H., Hitchcock D.R., Jayakaran A.D., Loflin D.R., Williams T.M, Amatya D.M., Curve Number derivation for watersheds draining two headwater streams in lower coastal plain South Carolina, USA. J. of American Water Resources Association (JAWRA), 2013, 49(6), 1284–1295.10.1111/jawr.12084
  11. [11] Hawkins R.H., Asymptotic determination of Curve Numbers from data, Journal of Irrigation and Drainage Division, 1993, 119(2), 334–345.10.1061/(ASCE)0733-9437(1993)119:2(334)
  12. [12] Hawkins R.H., Jiang R., Woodward D.E., Hjelmfelt A.T., Van Mullem J.A., Quan Q.D., Runoff Curve Number Method: Examination of the Initial Abstraction Ratio, Proceedings of the Second Federal Interagency Hydrologic Modeling Conference, Las Vegas, Nevada, U.S. Geological Survey, Lakewood, Colorado, ASCE Publications 2002.
  13. [13] King K.W., Balogh J.C., Curve numbers for golf course watersheds, American Society of Agricultural and Biological Engineers, 2008, 51(3), 987–996.10.13031/2013.24536
  14. [14] Kowalik T., Wałęga A., Estimation of CN Parameter for Small Agricultural Watersheds Using Asymptotic Functions, Water, 2015, 7(3), 939–955.10.3390/w7030939
  15. [15] Krzanowski S., Miler A.T., Walega A., The effect of moisture conditions on estimation of the CN parameter value in the mountain catchment, Infrastruct. Ecol. Rural Areas, 2013, 3, 105–117, (in Polish).
  16. [16] Malone R.W., Yagow G., Baffaut C., Gitau M.W., Qi Z., Amatya D.M., Parajuli P.B., Bonta J.V., Green T.R., Parameterization guidelines and considerations for hydrologic models, Transaction of the ASABE, 2015, 58(6), 1681–1703.10.13031/trans.58.10709
  17. [17] Michel C., Vazken A., Perrin C., Soil conservation service curve number method: how to mend a wrong soil moisture accounting procedure, Journal of Water Resources Research, 2005, 41, 1–6.10.1029/2004WR003191
  18. [18] Mishra S.K., Singh V.P., SCS-CN-based hydrologic simulation package, [in:] V.P. Singh, D.K. Frevert (Eds.), Mathematical Models of Small Watershed Hydrology and Applications, Water Resources Publs., LLC, Highlands Ranch, 2002, 391–464.
  19. [19] Mishra S.K., Singh V.P., Long-term hydrological simulation based on the Soil Conservation Service curve number, J. Hydrol. Process., 2004, 18, 1291–1313.10.1002/hyp.1344
  20. [20] Nash J.E., Sutcliffe J.V., River flow forecasting through conceptual models. Part I – a discussion of principles, J. of Hydrol., 1970, 10(3), 282–290.10.1016/0022-1694(70)90255-6
  21. [21] Ponce V.M., Engineering Hydrology: Principles and Practices, Prentice Hall, Upper Saddle River, New Jersey, 1989.
  22. [22] Ponce V.M., Hawkins R.H., Runoff curve number: Has it reached maturity? J. Hydrol. Eng., 1996, 1(1), 11–19.10.1061/(ASCE)1084-0699(1996)1:1(11)
  23. [23] Rallison R.E., Miller N., Past, present, and future SCS runoff procedure. In: Rainfall-runoff relationship, Proc. of the International Symphosium on Rainfall-Runoff Modelling, Missisipi, Missisipi State University, 18–21 May 1981, 353–364.
  24. [24] Ritter A., Muñoz-Carpena R., Performance evaluation of hydrological models: statistical significance for reducing subjectivity in goodness-of-fit assessments, J. of Hydrol., 2013, 480, 33–45.10.1016/j.jhydrol.2012.12.004
  25. [25] Rutkowska A., Kohnová S., Banasik K., Szolgay J., Karabowá B., Probabilistic properties of a curve number: A case study for small Polish and Slovak Carpathian Basins, Journal of Mountain Science, 2015, 12(3), 533–548.10.1007/s11629-014-3123-0
  26. [26] Sahu R.K., Mishra S.K., Eldho T.I., Performance evaluation of modified versions of SCS curve number method for two watersheds of Maharashtra, India, ISH J. Hydraul. Eng., 2012, 18(1), 27–36.10.1080/09715010.2012.662425
  27. [27] Soulis K.X., Valiantzas J.D., SCS-CN parameter determination using rainfall-runoff data in heterogeneous watersheds – the two-CN system approach, Hydrology and Earth System Sciences, 2012, 16, 1001–101.10.5194/hess-16-1001-2012
  28. [28] Soulis K.X., Valiantzas J.D., Identification of the SCS-CN Parameter Spatial Distribution Using Rainfall-Runoff Data in Heterogeneous Watersheds, Water Resour Manage, 2012, 27, 1737–1749.10.1007/s11269-012-0082-5
  29. [29] USDA Natural Resources Conservation Service. Hydrology, [in:] National Engineering Handbook; USDA Soil Conservation Service: Washington, DC, USA, 2004, Chapter 9.
  30. [30] Wałęga A., Rutkowska A., Usefulness of the Modified NRCS-CN Method for the Assessment of Direct Runoff in a Mountain Catchment, Acta Geophysica, 2015, 63(5), 1423–1446.10.1515/acgeo-2015-0043
  31. [31] Wałęga A., Michalec B., Cupak A., Grzebinoga M., Comparison of SCS-CN Determination Methodologies in a Heterogeneous Catchment, Journal of Mountain Science, 2015, 12(5), 1084–1094.10.1007/s11629-015-3592-9
  32. [32] Woodward D.E., Hawkins R.H., Jiang R., Hjelmfelt A.T. Jr., Van Mullem J.A., Quan D.Q., Runoff Curve Number Method: Examination of the Initial Abstraction Ratio, World Water and Environ. Resour. Congress and Related Symposia, EWRI, ASCE, 23–26 June, 2003, Philadelphia, Pennsylvania, USA.10.1061/40685(2003)308
  33. [33] Ven Te Chow, Maidment D.K., Mays L.W., Applied of Hydrology, McGraw Hill Book Company, New York 1988.
DOI: https://doi.org/10.1515/sgem-2017-0041 | Journal eISSN: 2083-831X | Journal ISSN: 0137-6365
Language: English
Page range: 111 - 120
Published on: Feb 16, 2018
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Andrzej Wałęga, Dariusz Młyński, Katarzyna Wachulec, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.