Have a personal or library account? Click to login

Locating Critical Circular and Unconstrained Failure Surface in Slope Stability Analysis with Tailored Genetic Algorithm

Open Access
|Feb 2018

References

  1. [1] Bengtsson M.G., 1993, Genetic algorithms, URL http://library.wolfram.com/infocenter/MathSource/569/
  2. [2] Cheng Y., Location of critical failure surface and some further studies on slope stability analysis, Computers and Geotechnics, 2003, 30(3), 255–267.10.1016/S0266-352X(03)00012-0
  3. [3] Cheng Y., Li L., Chun Chi S., Wei W., Particle swarm optimization algorithm for the location of the critical noncircular failure surface in two-dimensional slope stability analysis, Computers and Geotechnics, 2007, 34(2), 92–103.10.1016/j.compgeo.2006.10.012
  4. [4] Das S.K., Slope stability analysis using genetic algorithm, Electron. J. Geotech. Eng., 2005, 10, 429–439.
  5. [5] Gao W., Forecasting of landslide disasters based on bionics algorithm. Part 1: Critical slip surface searching, Computers and Geotechnics, 2014, 61, 370–377.10.1016/j.compgeo.2014.06.007
  6. [6] Garg A., Garg A., Tai K., Barontini S., Stokes A., A computational intelligence-based genetic programming approach for the simulation of soil water retention curves, Transport in Porous Media, 2014, 103(3), 497–513.10.1007/s11242-014-0313-8
  7. [7] Goh A.T., Genetic algorithm search for critical slip surface in multiple-wedge stability analysis, Canadian Geotechnical Journal, 1999, 36(2), 382–391.10.1139/t98-110
  8. [8] Goldberg D.E., Genetic Algorithms in Search, Optimization and Machine Learning, 1st Ed., Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1989.
  9. [9] Li Y.-C., Chen Y.-M., Zhan T.L., Ling D.-S., Cleall P.J., An efficient approach for locating the critical slip surface in slope stability analyses using a real-coded genetic algorithm, Canadian Geotechnical Journal, 2010, 47(7), 806–820.10.1139/T09-124
  10. [10] Madej J., Metody sprawdzania stateczności zboczy, Wydawnictwo Komunikacji Łączności, 1981.
  11. [11] Manouchehrian A., Gholamnejad J., Sharifzadeh M., Development of a model for analysis of slope stability for circular mode failure using genetic algorithm, Environmental Earth Sciences, 2014, 71(3), 1267–1277.10.1007/s12665-013-2531-8
  12. [12] Matthews C., Farook Z., Helm P., Slope stability anlysis – limit equilibrium or finite element method?, Ground Engineering, 2014, 22–28.
  13. [13] McCombie P., Wilkinson P., The use of the simple genetic algorithm in finding the critical factor of safety in slope stability analysis, Computers and Geotechnics, 2002, 29(8), 699–714.10.1016/S0266-352X(02)00027-7
  14. [14] Osiński P., Rickson R.J., Hann M.J., Koda E., Assessment of slope stability influenced by vegetation cover and additional loads applied, Annals of Warsaw University of Life Sciences, Land Reclamation, 2014, 46(2), 81–91.10.2478/sggw-2014-0007
  15. [15] Pasik T., Liniowa analiza numeryczna zachowania się gruntu pod fundamentem bezpośrednim przy wykorzystaniu czterowęzłowego elementu skończonego z wygładzonym polem naprężeń, Acta Sci. Pol. Architectura, 2016, 15(1), 15–26.
  16. [16] Pasik T., Van der Meij R., 2016. Locating critical circular and unconstrained failure surface in slope stability analysis with tailored genetic algorithm – mathematica code.10.1515/sgem-2017-0039
  17. [17] Sarma S.K., Tan D., Determination of critical slip surface in slope analysis, Gotechnique, 2006, 56(8), 539–550.10.1680/geot.2006.56.8.539
  18. [18] Sas W., Głuchowski A., Bursa B., Szymański A., Energy-based analysis of permanent strain behaviour of cohesive soil under cyclic loading, Acta Geophysica, 2017, 65(2), 331–344.10.1007/s11600-017-0028-7
  19. [19] Sengupta A., Upadhyay A., Locating the critical failure surface in a slope stability analysis by genetic algorithm, Applied Soft Computing, 2009, 9(1), 387–392.10.1016/j.asoc.2008.04.015
  20. [20] Srokosz P., Slope stability analysis by variational method with genetic algorithm application, Part 4: Parallel genetic algorithms, Archives of Civil Engineering, 2009, 55(2), 229–256.
  21. [21] Toll D., Asquith J., Fraser A., Hassan A., Liu G., Lourenco S., Mendes J., Noguchi T., Osiński P., Stirling R., Tensiometer techniques for determining soil water retention curves, Asia-Pacific Conference on Unsaturated Soil, At Guilin, China, 2015.10.1201/b19248-4
  22. [22] Van M.A., Koelewijn A.R., Barends F.B.J., Uplift phenomenon: Model, validation, and design, International Journal of Geomechanics, 2015, 5(2), 98–106.10.1061/(ASCE)1532-3641(2005)5:2(98)
  23. [23] Van der Meij R., Sellmeijer J.B., A genetic algorithm for solving slope stability problems: From bishop to a free slip plane, [in:] T. Benz, S. Nordal (Eds.), Proceedings of NUMGE 2010. Taylor & Francis Group, 2010, 345–350
  24. [24] Wellin P., Programming with Mathematica: An Introduction, Cambridge University Press, Cambridge Books Online, 2013.
  25. [25] Zhu J.-F., Chen C.-F., Search for circular and noncircular critical slip surfaces in slope stability analysis by hybrid genetic algorithm, Journal of Central South University, 2014, 21(1), 387–397.10.1007/s11771-014-1952-1
  26. [26] Zolfaghari A.R., Heath A.C., McCombie P.F., Simple genetic algorithm search for critical non-circular failure surface in slope stability analysis, Computers and Geotechnics, 2005, 32(3), 139–152.10.1016/j.compgeo.2005.02.001
DOI: https://doi.org/10.1515/sgem-2017-0039 | Journal eISSN: 2083-831X | Journal ISSN: 0137-6365
Language: English
Page range: 87 - 98
Published on: Feb 16, 2018
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Tomasz Pasik, Raymond van der Meij, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.