[2] Cheng Y., Location of critical failure surface and some further studies on slope stability analysis, Computers and Geotechnics, 2003, 30(3), 255–267.10.1016/S0266-352X(03)00012-0
[3] Cheng Y., Li L., Chun Chi S., Wei W., Particle swarm optimization algorithm for the location of the critical noncircular failure surface in two-dimensional slope stability analysis, Computers and Geotechnics, 2007, 34(2), 92–103.10.1016/j.compgeo.2006.10.012
[5] Gao W., Forecasting of landslide disasters based on bionics algorithm. Part 1: Critical slip surface searching, Computers and Geotechnics, 2014, 61, 370–377.10.1016/j.compgeo.2014.06.007
[6] Garg A., Garg A., Tai K., Barontini S., Stokes A., A computational intelligence-based genetic programming approach for the simulation of soil water retention curves, Transport in Porous Media, 2014, 103(3), 497–513.10.1007/s11242-014-0313-8
[9] Li Y.-C., Chen Y.-M., Zhan T.L., Ling D.-S., Cleall P.J., An efficient approach for locating the critical slip surface in slope stability analyses using a real-coded genetic algorithm, Canadian Geotechnical Journal, 2010, 47(7), 806–820.10.1139/T09-124
[11] Manouchehrian A., Gholamnejad J., Sharifzadeh M., Development of a model for analysis of slope stability for circular mode failure using genetic algorithm, Environmental Earth Sciences, 2014, 71(3), 1267–1277.10.1007/s12665-013-2531-8
[13] McCombie P., Wilkinson P., The use of the simple genetic algorithm in finding the critical factor of safety in slope stability analysis, Computers and Geotechnics, 2002, 29(8), 699–714.10.1016/S0266-352X(02)00027-7
[14] Osiński P., Rickson R.J., Hann M.J., Koda E., Assessment of slope stability influenced by vegetation cover and additional loads applied, Annals of Warsaw University of Life Sciences, Land Reclamation, 2014, 46(2), 81–91.10.2478/sggw-2014-0007
[15] Pasik T., Liniowa analiza numeryczna zachowania się gruntu pod fundamentem bezpośrednim przy wykorzystaniu czterowęzłowego elementu skończonego z wygładzonym polem naprężeń, Acta Sci. Pol. Architectura, 2016, 15(1), 15–26.
[16] Pasik T., Van der Meij R., 2016. Locating critical circular and unconstrained failure surface in slope stability analysis with tailored genetic algorithm – mathematica code.10.1515/sgem-2017-0039
[18] Sas W., Głuchowski A., Bursa B., Szymański A., Energy-based analysis of permanent strain behaviour of cohesive soil under cyclic loading, Acta Geophysica, 2017, 65(2), 331–344.10.1007/s11600-017-0028-7
[19] Sengupta A., Upadhyay A., Locating the critical failure surface in a slope stability analysis by genetic algorithm, Applied Soft Computing, 2009, 9(1), 387–392.10.1016/j.asoc.2008.04.015
[21] Toll D., Asquith J., Fraser A., Hassan A., Liu G., Lourenco S., Mendes J., Noguchi T., Osiński P., Stirling R., Tensiometer techniques for determining soil water retention curves, Asia-Pacific Conference on Unsaturated Soil, At Guilin, China, 2015.10.1201/b19248-4
[22] Van M.A., Koelewijn A.R., Barends F.B.J., Uplift phenomenon: Model, validation, and design, International Journal of Geomechanics, 2015, 5(2), 98–106.10.1061/(ASCE)1532-3641(2005)5:2(98)
[23] Van der Meij R., Sellmeijer J.B., A genetic algorithm for solving slope stability problems: From bishop to a free slip plane, [in:] T. Benz, S. Nordal (Eds.), Proceedings of NUMGE 2010. Taylor & Francis Group, 2010, 345–350
[25] Zhu J.-F., Chen C.-F., Search for circular and noncircular critical slip surfaces in slope stability analysis by hybrid genetic algorithm, Journal of Central South University, 2014, 21(1), 387–397.10.1007/s11771-014-1952-1