Have a personal or library account? Click to login
On Certain Stationarity Tests for Hydrologic Series Cover

On Certain Stationarity Tests for Hydrologic Series

Open Access
|Jul 2017

References

  1. [1] Agiakloglou C., Newbold P., The balance between size and power in Dickey-Fuller tests with data-dependent rules, Economics Letters, Vol. 52, Iss. 3, September 1996, pp. 229–234.10.1016/S0165-1765(96)00866-X
  2. [2] Banasik K., Byczkowski A., Probable annual floods in a small lowland river estimated with the use of various sets of data, Annals of Warsaw University of Life Sciences – SGGW, Land Reclam. 38, 2007, pp. 3–10.10.2478/v10060-008-0016-3
  3. [3] Bartnik W., Deńko S., Strużyński A., Zając T., Renaturyzacja Rzeki Nidy dla potrzeb ochrony przyrody w związku z programem „Natura 2000”, Kraków: Drukrol, 2004/2005.
  4. [4] Bayley G.V., Hammersley J.M., The “effective” number of independent observations in an autocorrelated time series, J. Royal Stat. Soc., 8(2). 1946, pp. 184–197.10.2307/2983560
  5. [5] Brillinger D.R., Consistent detection of a monotonic trend superposed on a stationary time, Biometrika, 76(1), 1989, pp. 23–30.10.1093/biomet/76.1.23
  6. [6] Charemza W.W, Deadman D.F., New Directions in Econometric Practice, Aldershot, 1992: Edward Elgar Publishing, 1992.
  7. [7] Cheung Y.W., Lai K.S., Lag order and critical values of the augmented Dickey-Fuller test, Journal of Business \& Economic Statistics, Vol. 13, No. 3, July 1995, pp. 277–280.10.1080/07350015.1995.10524601
  8. [8] Chow Ven Te, Handbook of Applied Hydrology, McGraw-Hill Book Company, 1964.
  9. [9] Clarke R.T., Hydrological prediction in a non-stationary world, Hydrology & Earth System Sciences, 2007, pp. 408–414.10.5194/hess-11-408-2007
  10. [10] Demetrescu M., Hasler U., Effect of neglected deterministic seasonality on unit root tests, Statistical Papers 48, 2007, pp. 385–402.10.1007/s00362-006-0343-6
  11. [11] Dickey D.A., Hasza D.P., Fuller W.A., Testing for Unit Roots in Seasonal Time Series, Journal of the American Statistical Assotiation 79, 1984, pp. 355–367.10.1080/01621459.1984.10478057
  12. [12] Dickey D.A., Fuller W.A., Distribution of the Estimators for Autoregressive Time Series with a Unit Root, Journal of the American Statistical Association, 74, 1979, pp. 427–431.10.1080/01621459.1979.10482531
  13. [13] Hall A., Testing for a Unit Root in Time Series With Pretest Data-Based Model Selection, Journal of Business & Economic Statistics, Vol. 12, No. 4. October 1994, pp. 461–470.10.1080/07350015.1994.10524568
  14. [14] Hamed Khaled H., Rao A. Ramachandra, A modified Mann-Kendall test for autocorrelated data, Journal of Hydrology, 204. 1998, pp. 182–196.10.1016/S0022-1694(97)00125-X
  15. [15] Hirsch R.M., Slack J.R., A nonparametric trend test for seasonal data with serial dependence, Water Resources Research, Vol. 20, No. 6. 1984, pp. 727–732.10.1029/WR020i006p00727
  16. [16] Kendall M.G., A new measure of rank correlation, Biometrika, 30, 1938, pp. 81–93.10.1093/biomet/30.1-2.81
  17. [17] Khaliq M.N., Ouarda T.B.M.J., Gachon P., Sushama L., St-Hilaire A., Identification of hydrological trends in the presence of serial and cross correlations: A review of selected methods and their application to annual flow regimes of Canadian rivers, Journal of Hydrology, 368. 2009, pp. 117–130.10.1016/j.jhydrol.2009.01.035
  18. [18] Kundzewicz Z.W., Graczyk D., Maurer T., Pińskwar I., Radziejewski M., Svensson C., Szwed M., Trend detection in river flow series: 1. Annual maximum flow, Hydrological Sciences Journal, 50(5). 2005, pp. 797–810.10.1623/hysj.2005.50.5.797
  19. [19] Kundzewicz Z.W., Graczyk D., Maurer T., Przymusinska I., Radziejewski M., Svensson C., Szwed M., Detection of change in world-wide hydrological time series of maximum annual flow, Koblenz, Germany: GRDC Report 32, 2004.
  20. [20] Kurozumi E., Construction of stationarity tests with less size distortions, Hitotsubashi Journal of Economics, 50. 2009, pp. 87–105.
  21. [21] Kwiatkowski D., Phillips P., Schmidt P., Shin Y., Testing the null hypothesis of stationarity against the alternative of a unit root, Journal of Econometrics, 54, 1992, pp. 159–178.10.1016/0304-4076(92)90104-Y
  22. [22] Leybourne S.J., McCabe B.P.M., A Consistent Test for a Unit Root, Journal of Business and Economic Statistics, 12. 1994, pp. 157–166.10.1080/07350015.1994.10510004
  23. [23] Leybourne S.J., McCabe B.P.M., Modified Stationarity Tests With Data-Dependent Model-Selection Rules, Journal of Business and Economic Statistics, 17, 1999, pp. 264–270.10.1080/07350015.1999.10524816
  24. [24] MacKinnon J.G., Critical Values for Cointegration Tests, [book auth.] R.F. Engle and C.W.J. Granger, Long-Run Economic Relationship: Readings in Cointegration, Oxford: Oxford University Press, 1991, pp. 267–276.10.1093/oso/9780198283393.003.0013
  25. [25] Mann H.B., Nonparametric test against trend, Econometrica, 13, 1945, pp. 245–259.10.2307/1907187
  26. [26] McLeod A.I., Hipel K.W., Tests for monotonic trend, Stochastic and Statistical Methods in Hydrology and Environmental Engineering, Vol. 3. 1994, pp. 245–270.10.1007/978-94-017-3083-9_19
  27. [27] Muller U.K., Size and power of tests of stationarity in highly autocorrelated time series, Journal of Econometrics, 128. 2004, pp. 195–213.10.1016/j.jeconom.2004.08.012
  28. [28] Ozga-Zielińska M., Ozga-Zieliński B., Określanie prawdopodobieństwa przepływów ekstremalnych rocznych genetycznie niejednorodnych : metoda alternatywy zdarzeń, Gospodarka Wodna, 5, 2007, pp. 191–196.
  29. [29] Rao A.R., Yu G.H., Detection of nonstationarity in hydrologic time series, Management Science, Vol. 32, No. 9. 1986, pp. 1206–1217.10.1287/mnsc.32.9.1206
  30. [30] Said E., Dickey D.A., Testing for Unit Roots in Autoregressive Moving Average Models of Unknown Order, Biometrika, 71, 1984, pp. 599–607.10.1093/biomet/71.3.599
  31. [31] Schwert G.W., Tests for Unit Roots: A Monte Carlo Investigation, Journal of Business and Economic Statistics, 7(2). April 1989, strony 147–159.10.1080/07350015.1989.10509723
  32. [32] Strużyński A., Flood protection in highly valuable river ecosystems – middle delta system of the Nida River, Electronic Journal of Polish Agricultural Universities, Vol. 14, issue 2. 2011, pp. http://www.ejpau.media.pl/.
  33. [33] Wang W., Van Gelder P.H.A.J.M., Vrijling J.K., Detection of changes in streamflow series in western Europe over 1901–2000, Water Science and Technology: Water Supply, Vol. 5, No. 6, 2005, pp. 289–299.10.2166/ws.2005.0075
  34. [34] Węglarczyk S., On the stationarity of extreme levels of some Polish lakes. I. Preliminary results from statistical test, Limnological Review, 9, 2–3, 2009, pp. 129–138.
  35. [35] Węglarczyk S., Wybrane problemy hydrologii stochastycznej, Kraków, Wydawnictwo Politechniki Krakowskiej, Seria Inżynieria Sanitarna i Wodna, 1998.
DOI: https://doi.org/10.1515/sgem-2017-0022 | Journal eISSN: 2083-831X | Journal ISSN: 0137-6365
Language: English
Page range: 51 - 63
Published on: Jul 8, 2017
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Agnieszka Rutkowska, Marek Ptak, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.