Have a personal or library account? Click to login
Temperature Changes in the Vicinity of Thermally Loaded Structure Embedded in the Soil: Effect of Sand Content and Saturation Degree Cover

Temperature Changes in the Vicinity of Thermally Loaded Structure Embedded in the Soil: Effect of Sand Content and Saturation Degree

Open Access
|Aug 2017

References

  1. [1] BRISTOW K.L., Thermal conductivity, [in:] Methods of Soil Analysis. Part 4. Physical Methods, J.H. Dane, G.C. Topp (eds.), Soil Science Society of America, Madison, WI, 2002, 1209-1226.10.2136/sssabookser5.4.c50
  2. [2] BRISTOW K.L., KLUITENBERG G.J., HORTON R., Measurement of soil thermal properties with a dual-probe heat-pulse technique, Soil Science Society of America Journal, 1994, 58(5), 1288-1294.10.2136/sssaj1994.03615995005800050002x
  3. [3] CLAUSER C., HUENGES E., Thermal conductivity of rocks and minerals, [in:] Rock Physics and Phase Relations: A Handbook of Physical Constants (ed. T.J. Ahrens), American Geophysical Union, Washington, D.C, 1995, 105-126.10.1029/RF003p0105
  4. [4] CÔTÉ J., KONRAD J.M., Thermal conductivity of base-course materials, Canadian Geotechnical Journal, 2005, 42, 61-78.10.1139/t04-081
  5. [5] DE VRIES D.A., Thermal properties of soils, [in:] Physics of Plant Environment (ed. W.R. van Wijk), North-Holland, Amsterdam 1963, 210-235.
  6. [6] DONAZZI F., OCCHINI E., SEPPI A., Soil thermal and hydrological characteristics in designing underground cables, Proceedings of the Institution of Electrical Engineers, June 1979, Vol. 126, No. 6, 506-516), IET Digital Library.10.1049/piee.1979.0119
  7. [7] FAROUKI O.T., Thermal Properties of Soils, CRREL Monograph 81-1, United States Army Corps of Engineers, Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire 1981.
  8. [8] GAO J., ZHANG X., LIU J., LI K., YANG J., Numerical and experimental assessment of thermal performance of vertical energy piles: an application, Applied Energy, 2008, 85(10), 901-910.10.1016/j.apenergy.2008.02.010
  9. [9] GEHLIN S., Thermal response test: method development and evaluation, PhD thesis, Luleå tekniska universitet, 2002.
  10. [10] GEMANT A., How to compute thermal soil conductivities, Heating, Piping and Air Conditioning, 1952, 24, 122-123.
  11. [11] HAMEYER K., DRIESEN J., DE GERSEM H., BELMANS R., The classification of coupled field problems, IEEE Transactions on magnetics, 1999, 35(3), 1618-1621.10.1109/20.767304
  12. [12] JOHANSEN O., Thermal Conductivity of Soils, Ph.D. dissertation, Norwegian University of Science and Technology, Trondheim, Norway (CRREL draft translation 637, 1977).
  13. [13] KERSTEN M.S., Laboratory research for the determination of the thermal properties of soils, Bulletin No. 28. Minneapolis, MN: University of Minnesota Engineering Experiment Station 1949.
  14. [14] KHOSRAVI A., MORADSHAHI A., MCCARTNEY J.S., KABIRI M., Numerical analysis of energy piles under different boundary conditions and thermal loading cycles, E3S Web of Conferences, EDP Sciences, 2016, Vol. 9, p. 05005.10.1051/e3sconf/20160905005
  15. [15] LALOUI L., NUTH M., VULLIET L., Experimental and numerical investigations of the behaviour of a heat exchanger pile, International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(8), 763-781.10.1002/nag.499
  16. [16] LU S., REN T., GONG Y., HORTON R., An improved model for predicting soil thermal conductivity from water content at room temperature, Soil Science Society of America Journal, 2007, 71, 8-14.10.2136/sssaj2006.0041
  17. [17] MICKLEY A.S., The thermal conductivity of moist soil, Transactions of the American Institute of Electrical Engineers, 1951, 2, 1789-1797.10.1109/T-AIEE.1951.5060631
  18. [18] MOHSENIN N.N., Thermal Properties of Foods and Agricultural Materials, Gordon and Breach, New York 1980.
  19. [19] MURPHY K.D., MCCARTNEY J.S., HENRY K.S., Evaluation of thermo-mechanical and thermal behavior of full-scale energy foundations, Acta Geotechnica, 2015, 10(2), 179-195.10.1007/s11440-013-0298-4
  20. [20] PETERS-LIDARD C.D., BLACKBURN E., LIANG X., WOOD E.F., The effect of soil thermal conductivity parameterization on surface energy fluxes and temperatures, Journal of the Atmospheric Sciences, 1998, 55, 1209-1224.10.1175/1520-0469(1998)055<;1209:TEOSTC>2.0.CO;2
  21. [21] RICHARDS L.A., Capillary conduction of liquids through porous mediums, Physics, 1931, 1(5), 318-333.10.1063/1.1745010
  22. [22] RÓŻAŃSKI A., STEFANIUK D., On the prediction of the thermal conductivity of saturated clayey soils: effect of the specific surface area, Acta Geodyn. Geomater., 2016a, Vol. 13, No. 4 (184), 339-349.10.13168/AGG.2016.0016
  23. [23] RÓŻAŃSKI A., STEFANIUK D., Prediction of soil solid thermal conductivity from soil separates and organic matter content: computational micromechanics approach, European Journal of Soil Science, 2016b, 67(5), 551-563.10.1111/ejss.12368
  24. [24] VAN GENUCHTEN M.T., A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Science Society of America Journal, 1980, 44(5), 892-898.10.2136/sssaj1980.03615995004400050002x
  25. [25] WIENER O., Abhandl. Math-Phys. Kl. Sachs. Akad. Wiss, 1912, 32, 509.
  26. [26] ZHANG N., WANG Z., Review of soil thermal conductivity and predictive models, International Journal of Thermal Sciences, 2017, 117, 172-183.10.1016/j.ijthermalsci.2017.03.013
DOI: https://doi.org/10.1515/sgem-2017-0016 | Journal eISSN: 2083-831X | Journal ISSN: 0137-6365
Language: English
Page range: 61 - 71
Published on: Aug 1, 2017
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Adrian Różański, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.