[2] BARDET J.P., PROUBET J., A Numerical Investigation of the Structure of Persistent Shear Bands in Granular Media, Geotechnique, 1991, 41, No. 4, 599-613.10.1680/geot.1991.41.4.599
[8] CUI L., O’SULLIVAN C., Exploiting the macro-and-microscale response of an idealised granular material in the direct shear apparatus, Geotechnique, 2006, 56, No. 7, 455-468.10.1680/geot.2006.56.7.455
[10] HOSONO Y., YOSHIMINE M., Liquafaction of sand in simple shear condition. Cyclic Behaviour of Soils and Liquafaction Phenomena, Triantafyllidis T. (ed.), Balkema, Rotterdam 2004.10.1201/9781439833452.ch16
[11] HOSONO Y., YOSHIMINE M., Liquafaction of sand in simple shear condition, Proc. of Int. Conf. on Cyclic Behaviour of Soils and Liquafaction Phenomena, Bohun, Germany, March 31th-April 2nd 2004.10.1201/9781439833452.ch16
[12] HONG NAM N., KOSEKI J., Modelling quasi-elastic deformation properties of sand, Deformation Characteristics of Geomaterials, IS - Lyon 2003, 275-283.10.1201/NOE9058096043.ch34
[14] LIKOS W.J., WAYLLACE A., GODT J., LU N., Modified Direct Shear Apparatus for Unsaturated Sands at Low Suction and Stress, Geotechnical Testing Journal, 2010, 33, No. 4, 286-298.10.1520/GTJ102927
[17] LUZZANI L., COOP M.R., On the relationship between particle breakage and the critical state of sands, Soils and Foundations, 2002, Vol. 42, No. 2, 71-82.10.3208/sandf.42.2_71
[18] MILATZ M., GRABE J., A new simple shear apparatus and testing method for unsaturated sands. Geotech. Testing J., 2015, Vol. 38, No. 1, 9-22.10.1520/GTJ20140035
[20] OCHIAI H., Stress condition within simple shear test specimen, Reports of the Faculty of Engineering, Nagasaki University, No. 12, February, 1979, 57-63.
[25] SASSA K., WANG G., FUKUAKA H., Performing Undrained Shear Tests on Saturated Sands in a New Intelligent Type of Ring Shear Apparatus, Geotechnical Testing Journal, 2003, 26, No. 3, 257-265.10.1520/GTJ11304J
[26] SCARPELLI G., WOOD D.M., Experimental observations of shear band patterns in direct shear tests, IUTAM Conference on Deformation and Failure of Granular Materials. Delft/31-Aug.-3 Sept. 1982, 473-484.
[27] SHIBUYA S., KOSEKI J., KAWAGUCHI T., Recent developments in deformation and strength testing of geomaterials, Deformation Characteristics of Geomaterials. Di Benedetto et al. (eds.), Taylor & Francis Group, London 2005, 3-28.
[29] SHIPTON B., COOP M.R., On the compression behaviour of reconstituted soils, Soils and Foundations, 2012, 52, No. 4, 668-681.10.1016/j.sandf.2012.07.008
[31] SZYPCIO Z., Stress-dilatancy for soils. Part I: The frictional state theory, Studia Geotechnica et Mechanica, 2016, Vol. 38, No. 4, 51-57.10.1515/sgem-2016-0030
[32] SZYPCIO Z., Stress-dilatancy for soils. Part II: Experimental validation for triaxial tests, Studia Geotechnica et Mechanica, 2016, Vol. 38, No. 4, 59-65.10.1515/sgem-2016-0031
[33] SZYPCIO Z., Stress-dilatancy for soils. Part III: Experimental validation for the biaxial conditions, Studia Geotechnica et Mechanica, 2017, Vol. 39, No. 1, 73-80.10.1515/sgem-2017-0007
[34] TANG Y.X., HANZAWA H., YASUHARA K., Direct shear and direct simple shear tests results on Japanese marine clay, Pre-failure Deformation of Geomaterials. Balkema, Rotterdam 1995, 107-112.
[36] TAYLOR D.W., A direct test with drainage control, Symp. on Direct Shear Testing of Soils, ASTM Special Techn. Publ., 1952, No. 131, 63-74.10.1520/STP47725S
[37] WIJEWICKREME D., DABEET A., BYRNE P., Some Observations on the State of Stress in the Direct Simple Shear Test Using Discrete Element Analysis, Geotechnical Testing Journal, 2013, 36, No. 2, 292-298.10.1520/GTJ20120066
[39] WU P.-K., MATSUSHIMA K., TATSUOKA F., Effects of Specimen Size and Some Other Factors on the Strength and Deformation of Granular Soil in Direct Shear Tests, Geotechnical Testing Journal, 2008, 31, No. 1, 45-64.10.1520/GTJ100773
[40] YAN W.M., Particle Elongation and Deposition Effect to Macroscopic and Microscopic Responses of Numerical Direct Shear Tests, Geotechnical Testing Journal, 2010, 34, No. 3, 238-249.10.1520/GTJ102785