Have a personal or library account? Click to login

Numerical Approach in Recognition of Selected Features of Rock Structure from Hybrid Hydrocarbon Reservoir Samples Based on Microtomography

Open Access
|May 2017

References

  1. [1] APPOLONI C.R., FERNANDES C.P., RODRIGUES C.R.O., X-ray microtomography study of a sandstone reservoir rock, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 580(1), 629-632, DOI: 10.1016/ j.nima.2007.05.027.10.1016/j.nima.2007.05.027
  2. [2] BAKER D.R., MANCINI L., POLACCI M., HIGGINS M.D., GUALDA G.A.R., HILL R.J., RIVERS M.L., An introduction to the application of X-ray microtomography to the threedimensional study of igneous rocks, Lithos, 2016, 148, 262-276, DOI: 10.1016/j.lithos.2012.06.008.10.1016/j.lithos.2012.06.008
  3. [3] BECKERS E., PLOUGONVEN E., ROISIN C., HAPCA S., LÉONARD A., DEGRÉ A., X-ray microtomography: A porositybased thresholding method to improve soil pore network characterization?, Geoderma, 2014, 219-220, 145-154, DOI: 10.1016/j.geoderma.2014.01.004.10.1016/j.geoderma.2014.01.004
  4. [4] BIELECKI J., JARZYNA J., BOŻEK S., LEKKI J., STACHURA Z., KWIATEK W.M., Computed microtomography and numerical study of porous rock samples, Radiation Physics and Chemistry, 2013, 93, 59-66, DOI: 10.1016/ j.radphyschem.2013.03.050.10.1016/j.radphyschem.2013.03.050
  5. [6] CESAREO R., ASSIS J.T. DE, CRESTANA S., Attenuation coefficients and tomographic measurements for soil in the energy range 10-300 keV, Applied Radiation and Isotopes, 1994, 45(5), 613-620, DOI: 10.1016/0969-8043(94)90205-4.10.1016/0969-8043(94)90205-4
  6. [7] CHASE G.D., RABINOWITZ J.L., Principles of radioisotope methodology, Burgess Publishing Co. Minneapolis, USA 1968.
  7. [8] CORMACK A.M., Representation of a function by its line integrals, with some radiological applications, Journal of Applied Physics, 1963, 34(9), 2722-2727.10.1063/1.1729798
  8. [9] CNUDDE V., BOONE M.N., High-resolution X-ray computed tomography in geosciences: A review of the current technology and applications, Earth-Science Reviews, 2013, 123, 1-17, DOI: 10.1016/j.earscirev.2013.04.003.10.1016/j.earscirev.2013.04.003
  9. [10] DVORKIN J., DERZHI N., FANG Q., NUR A., NUR B., GRADER A., BALDWIN C., TONO H., DIAZ E., From micro to reservoir scale: Permeability from digital experiments, The Leading Edge, 2009, 28, 1446-1452.10.1190/1.3272699
  10. [11] HOEK E., CARRANZA-TORRES C., CORKUM B., Hoek-Brown failure criterion, Proceedings of NARMS-Tac. Conference, 2002, 267-273, Toronto, Canada.
  11. [12] Itasca (2015). PFC3D v5. 0-user manual. Itasca Consulting Group, Minneapolis, USA.
  12. [13] KACZMAREK Ł., ŁUKASIAK D., MAKSIMCZUK M., WEJRZANOWSKI T., Wykorzystanie wysokorozdzielczej mikrotomografii komputerowej oraz analizy ultradźwiękowej w charakterystyce struktury paleozoicznych gazonośnych łupków z basenu bałtyckiego, Nafta-Gaz, 2015, 71(12), 1017-1023, DOI: 10.18668/NG2015.10.10.18668/NG2015.10
  13. [14] KACZMAREK Ł., MACHOWSKI G., MAKSIMCZUK M., WEJRZANOWSKI T., Strukturalna analiza mioceńskich piaskowców z zapadliska przedkarpackiego za pomocą wysokorozdzielczej mikrotomografii komputerowej, Nafta-Gaz, 2015, 71(9), 647-654.10.18668/NG2015.12.10
  14. [15] KACZMAREK Ł., KOZŁOWSKA A., MAKSIMCZUK M., WEJRZANOWSKI T., The use of X-ray computed microtomography for graptolite detection in rock based on core internal structure visualization, Acta Geologica Polonica, 2017, 67(2), (in press), DOI: 10.1515/agp-2017-0010.10.1515/agp-2017-0010
  15. [16] KAPLAN I., Nuclear Physics, Addison-Wesley Publishing Co., Reading, USA, 1963.
  16. [17] KETCHAM R.A., CARLSON W.D., Acquisition, optimization and interpretation of x-ray computed tomographic imagery: Applications to the geosciences, Computers and Geosciences, 2001, 27(4), 381-400.10.1016/S0098-3004(00)00116-3
  17. [18] KRZYŻAK A., KACZMAREK Ł., Comparison of the efficiency of 1H NMR and μCT for determining the porosity of the selected rock cores, 16th International Multidisciplinary Scientific Geoconference GREEN SGEM, 2016, Vol. 4, 81-88. SGEM, DOI: 10.5593/SGEM2016/HB14/S01.011.
  18. [19] LI X., KONIETZKY H., LI X., Numerical study on time dependent and time independent fracturing processes for brittle rocks, Engineering Fracture Mechanics, 2016, 163, 89-107, DOI: 10.1016/j.engfracmech.2016.08.008.10.1016/j.engfracmech.2016.08.008
  19. [20] MIRVIS S.E., Applications of magnetic resonance imaging and three-dimensional computed tomography in emergency medicine, Annals of Emergency Medicine, 1989, 18(12), 1315-1321, DOI: 10.1016/S0196-0644 (89)80268-9.
  20. [21] NABIAŁEK M., BLOCH K., SZLAZAK K., SZOTA M., Magnetic properties and microstructure of a bulk amorphous Fe61Co10Ti3Y6B20 alloy, fabricated as rods and tubes, Materiali in Tehnologije, 2016, 50(2), 189-193, DOI: 10.17222/mit.2014.144.10.17222/mit.2014.144
  21. [22] OLDENDORF W.H., Isolated flying spot detection of radiodensity discontinuities-displaying the internal structural pattern of a complex object, IRE Transactions on Bio-Medical Electronics, 1961, 8, 68-72.10.1109/TBMEL.1961.432285413730689
  22. [23] OSZCZYPKO N., KRZYWIEC P., POPADYUK I., PERYT T., Carpathian Foredeep Basin (Poland and Ukraine): Its Sedimentary, Structural, and Geodynamic Evolution, [in:] J. Golonko, F.J. Picha (Eds.), The Carpathians and their foreland: Geology and hydrocarbon resources, AAPG Memoir, 2006, 84, 293-350.
  23. [24] PASZKOWSKI M., PORĘBSKI S.J., WARCHOL M., Koncepcja projektu otworu kierunkowego w mioceńskich utworach zapadliska przedkarpackiego, Wiadomości Naftowe i Gazownicze, 2009, 3(131), 4-13.
  24. [25] PETCHSINGTO T., KARPYN Z.T., Deterministic Modeling of Fluid Flow through a CT-scanned Fracture Using Computational Fluid Dynamics, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2009, 31(11), 897-905, DOI: 10.1080/15567030701752842.10.1080/15567030701752842
  25. [26] PSTRUCHA A., MACHOWSKI G., KRZYŻAK A.T., Petrophysical characterization of the miocene sandstones of the carpathian foredeep (south-east Poland), 16th International Multidisciplinary Scientific Geoconference GREEN SGEM, 2016, Vol. 3, 891-898, SGEM, DOI: 10.5593/SGEM2016/B13/S06.112.10.5593/SGEM2016/B13/S06.112
  26. [27] RYBAK A., RYBAK A., KASZUWARA W., AWIETJAN S., JAROSZEWICZ J., The rheological and mechanical properties of magnetic hybrid membranes for gas mixtures separation, Materials Letters, 2016, 183, 170-174, DOI: 10.1016/ j.matlet.2016.07.078.10.1016/j.matlet.2016.07.078
  27. [28] SKIBINSKI J., CWIEKA K., WEJRZANOWSKI T., KURZYDLOWSKI K.J., Design of mechanical properties of open-cell porous materials based on μCT study of commercial foams, In MATEC Web of Conferences, 2015, 30, 03005-p.1-03005-p.5, DOI: 10.1051/ matecconf/20153003005.10.1051/matecconf/20153003005
  28. [29] WEJRZANOWSKI T., HAJ IBRAHIM S., CWIEKA K., MILEWSKI J., KURZYDLOWSKI K.J., Design of open-porous materials for high-temperature fuel cells. Journal of Power Technologies, 2016, 96(3), 178-182.
  29. [30] ZHAO Y., LIU SH., ZHAO G., ELSWORTH D, JIANG Y., HAN J., Failure mechanisms in coal: Dependence on strain rate and microstructure, Journal of Geophysical Research: Solid Earth, 2014, 119(9), 6924-6935.10.1002/2014JB011198
DOI: https://doi.org/10.1515/sgem-2017-0002 | Journal eISSN: 2083-831X | Journal ISSN: 0137-6365
Language: English
Page range: 13 - 26
Published on: May 17, 2017
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2017 Łukasz Dominik Kaczmarek, Yufeng Zhao, Heinz Konietzky, Tomasz Wejrzanowski, Michał Maksimczuk, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.