Have a personal or library account? Click to login

Liquefaction mechanism induced by dynamic excitation modeled in Plaxis AE with the use of UBC and MOHR–coulomb constitutive relationships

Open Access
|Apr 2016

References

  1. [1] Chen J.W., Chen F.C., The penetration experiment to predict liquefaction resistance of reclaimed soils, Ocean Engineering, 2008, 35, 380–392.10.1016/j.oceaneng.2007.10.003
  2. [2] Daftari A., Kudla W., Prediction of Soil Liquefaction by Using UBC3D-PLM Model in PLAXIS, International Journal of Environmental, Ecological, Geological and Mining Engineering, 2014.
  3. [3] Galavi V. et al., Finite Element Modelling of Seismic Liquefaction in Soils, Geotechnical Engineering Journal of the SEAGS & AGSSEA, 2013, 44.
  4. [4] Haritos N., Modelling ocean waves and their effects on offshore structures, Australian Earthquake Engineering Society 2010 Conference.
  5. [5] Hwang J.H. et al., A practical reliability-based method for assessing soil liquefaction potential, Soil Dynamics and Earthquake Engineering, 2004, 24, 761–770.10.1016/j.soildyn.2004.06.008
  6. [6] Noorzad R. et. al., The effect of structures on the wave-induced liquefaction potential of seabed sand deposits, Applied Ocean Research, 2009, 31, 25–30.10.1016/j.apor.2009.03.002
  7. [7] Makra A., Evaluation of the UBC3D-PLM constitutive model for prediction of earthquake induced liquefaction on embankment dams, MSc. Graduation Thesis, 2013.
  8. [8] Lenz A., Baise G., Spatial variability of liquefaction potential in regional mapping using CPT and SPT data. Soil Dynamics and Earthquake Engineering, 2007, 27, 690–702.10.1016/j.soildyn.2006.11.005
  9. [9] Petalas A., Galavi V., Plaxis Liquefaction Model UBC3DPLM, PLAXIS, 2013.
  10. [10] Puebla H., Byrne M., Phillips P., Analysis of CANLEX liquefaction embankments prototype and centrifuge models,. Canadian Geotechnical Journal, 1997, 34, 641.10.1139/t97-034
  11. [11] Tsegaye A.B., Liquefaction Model UBC3D, PLAXIS, 2010.
  12. [12] Wiłun Z., Zarys geotechniki, Wydawnictwo Komunikacji i Łączności, 2013.
  13. [13] Winterwerp J.C. et al., Mud-induced wave damping and wave-induced liquefaction, Coastal Engineering, 2012, 64, 102–112.10.1016/j.coastaleng.2012.01.005
  14. [14] Xiao H. et al., Parametric study of breaking solitary wave induced liquefaction of coastal sandy slopes, Ocean Engineering, 2010, 37, 1546–1553.10.1016/j.oceaneng.2010.09.014
  15. [15] Ye. J., 3D liquefaction criteria for seabed considering the cohesion and friction of soil, Applied Ocean Research, 2012, 37, 111–119.10.1016/j.apor.2012.04.004
  16. [16] Zhang Y. et al., An analytical solution for response of a porous seabed to combined wave and current loading, Ocean Engineering, 57, 240–247, 2013.10.1016/j.oceaneng.2012.09.001
  17. [17] Strong-Motion Virtual Data Center, Center for Engineering Strong Motion Data, strongmotioncenter.org
  18. [18] Central Geological Database, Polish Geological Institute, m.bazagis.pgi.gov.pl
  19. [19] COSMOS Virtual Data Center, Consortium of Organizations for Strong-Motion Observation Systems, cosmos-eq.org
DOI: https://doi.org/10.1515/sgem-2016-0013 | Journal eISSN: 2083-831X | Journal ISSN: 0137-6365
Language: English
Page range: 123 - 133
Published on: Apr 18, 2016
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Anna Borowiec, Michał Stanuszek, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.