Have a personal or library account? Click to login
Analysis of the Foundation Slab Settlement of the “Africa Pavilion” Facility in Wrocław Cover

Analysis of the Foundation Slab Settlement of the “Africa Pavilion” Facility in Wrocław

Open Access
|Feb 2016

References

  1. [1] Bartlewska M., Strzelecki T., Equations of Biots consolidation with Kelvin–Voight rheological frame, Studia Geotechnica et Mechanica, 2009, Vol. XXXI, No. 2.
  2. [2] Barucq H., Madaune-Tort M., Saint-Macary P., On nonlinear Biot’s consolidation models, Nonlinear Analysis, 2005, 63, e985–e995.10.1016/j.na.2004.12.010
  3. [3] Biot M.A., General Theory of three-dimensional Consolidation, J. Appl. Physics, 1941, Vol. 12.10.1063/1.1712886
  4. [4] Biot M.A., Theory of Elasticity and Consolidation for a Porous Anisotropic Solid, Journal of Applied Physics, 1955, Vol. 26, No. 2, 182–185.10.1063/1.1721956
  5. [5] Biot M.A., Theory of Propagation of Elastic Waves in a Fluid-Saturated porous Solid. I Low-Frequency Range, J.A.S.A., 1956, 28, 2, 168–178.10.1121/1.1908239
  6. [6] Biot M.A., Willis D.G., The Elastic Coefficients of the Theory of Consolidations, Journal of Applied Physics, 1957, Vol. 24.10.1115/1.4011606
  7. [7] Coussy O., Mechanics of Porous Continua, John Wiley & Sons, 1995.
  8. [8] Fatt I., Compressibility of sandstones at low to moderate pressures, Bulletin of the American Association of Petroleum Geologists, 1924–1957, Vol. 42, No. 8, (August 1958).10.1306/0BDA5B8E-16BD-11D7-8645000102C1865D
  9. [9] Ferronato M., Castelletto N., Gambolati G., A fully coupled 3-D mixed finite element model of Biot consolidation, Journal of Computational Physics, 2010, 229, 4813–4830.10.1016/j.jcp.2010.03.018
  10. [10] FlexPDE 6, Manual, www.pdesolutions.com
  11. [11] Gaspar F.J., Lisbona F.J., Vabishchevich P.N., A finite difference analysis of Biot’s consolidation model, Applied Numerical Mathematics, 2003, 44, 487–506.10.1016/S0168-9274(02)00190-3
  12. [12] Menéndeza C., Nieto P.J.G., Ortega F.A., Bello A., Mathematical modelling and study of the consolidation of an elastic saturated soil with an incompressible fluid by FEM, Mathematical and Computer Modelling, 2009, 49, 2002–2018.10.1016/j.mcm.2008.10.003
  13. [13] Strzelecki T., Kostecki S., Żak. S., Modeling of flows through porous media, Lower Silesia Educational Publishers, 2008, (in Polish).
  14. [14] Swan C., Lakes R., Brand R., Stewart K., Micromechanically based poroelastic modeling of fluid flow in Haversian bone, J. Biomech. Eng. 2003, 125, 25–37.
  15. [15] Teatini P., Ferronato M., Gambolati G., Gonella M., Groundwater pumping and land subsidence in the Emilia–Romagna coastland, Italy: modeling the past occurrence and the future trend, Water Resour. Res., 2006, 42, DOI: 10.1029/2005WR004242.10.1029/2005WR004242
  16. [16] Herbert F. Wang, Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology, Princeton University Press, 2000.
  17. [17] Folder with photos; https://www.google.pl/search?q=budowa+afrykarium+wroc%C5%82aw&tbm=isch&tbo=u&source=univ&sa=X&ei=H2JVKS_IojA7AbI6YDgCA&ved=0CC4QsAQ&biw=1536&bih=709#facrc=_&imgdii=_
DOI: https://doi.org/10.1515/sgem-2015-0044 | Journal eISSN: 2083-831X | Journal ISSN: 0137-6365
Language: English
Page range: 47 - 55
Published on: Feb 12, 2016
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Eugeniusz Sawicki, Tomasz Strzelecki, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.