Have a personal or library account? Click to login
Numerical Simulations of Blast Loads from Near-Field Ground Explosions in Air Cover

Numerical Simulations of Blast Loads from Near-Field Ground Explosions in Air

Open Access
|Feb 2016

References

  1. [1] Kingery C.N., Bulmash G., Airblast parameters from TNT spherical air burst and hemispherical surface burst, ARBRL-TR-02555. MD: U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, 1984.
  2. [2] Randers-Pehrson G., Bannister K., Airblast loading model for DYNA2D and DYNA3D, ARL-TR-1310, Army Research Laboratory, 1997.
  3. [3] LS-DYNA®KEYWORD USER’S MANUAL VOLUME II Material Models. 01/02/15 (r:5991) LS-DYNA Dev, Livermore Software Technology Corporation (LSTC), 2015.
  4. [4] Zakrisson B., Wikman B., Häggblad H., Numerical simulations of blast loads and structural deformation from near-field explosions in air, International Journal of Impact Engineering, 2011, 38, 597–612.10.1016/j.ijimpeng.2011.02.005
  5. [5] Johnson G.R., Cook W.H., A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, Proceedings of the 7th International Symposium on Ballistics, The Hague, The Netherlands, 23 Apr. 1983.
  6. [6] Flis L., Sperski M., Badania odporności osłon warstwowych zbudowanych ze stali kadłubowych na ostrzał pociskami 12,7 mm, ZN AMW nr 4 Gdynia, 2013.10.5604/0860889X.1097962
  7. [7] Sonntag R.E., Borgnakke C., Van Wylen G.J., Fundamentals of thermodynamics, 6th ed., Wiley, Cop., New York, 2003.
  8. [8] Lewis B., Manual for LS-DYNA Soil Material Model 147, Federal Highway Administrator, McLEAN, VA, publication No. FHWA-HRT-095 (2004).
  9. [9] Arulmoli K., Muraleetharan M., Hossain M., Velacs verification of liquefaction analyses by centrifuge studies laboratory testing program soil data report, Tech. rep., The Earth Technology Corp., Project No. 90-0562. Irvine, California (March 1992).
  10. [10] Dobrociński S., Stabilność rozwiązań zagadnień odporności udarowej konstrukcji, Biblioteka Problemów Eksploatacji, AMW, Gdynia 2000.
  11. [11] http://blog2.d3view.com/sph-contact-definitions/
  12. [12] ANSYS, AUTODYN®, Explicit Software for Nonlinear Dynamics, SPH User Manual & Tutorial, Revision 4.3, Century Dynamics, 2005.
  13. [13] Andersen K.H., Børsum Hernandez F., Numerical Simulations of Docol 600 DL Steel Plates Subject to Blast Loading, Department of Structural Engineering, NTNU, Trondheim, 2013.
  14. [14] Baranowski P., Małachowski J., Numerical study of selected military vehiclechassis subjected to blast loading in terms of tire strength improving, Bulletin of the Polish Academy of Sciences, Technical Sciences, Vol. 63, No. 4, 2015.10.1515/bpasts-2015-0099
  15. [15] Mazurkiewicz Ł., Małachowski J., Baranowski P., Blast loading influence on load carrying capacity of I-column, Engineering Structures 104 (2015) 107–115.10.1016/j.engstruct.2015.09.025
  16. [16] Mazurkiewicz Ł., Małachowski J., Baranowski P., Optimization of protective panel for critical supporting elements,Composite Structures 134 (2015) 493–505.10.1016/j.compstruct.2015.08.069
DOI: https://doi.org/10.1515/sgem-2015-0040 | Journal eISSN: 2083-831X | Journal ISSN: 0137-6365
Language: English
Page range: 11 - 18
Published on: Feb 12, 2016
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Stanisław Dobrociński, Leszek Flis, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.