Have a personal or library account? Click to login

Low genetic diversity in the endangered Taxus yunnanensis following a population bottleneck, a low effective population size and increased inbreeding

By:
Open Access
|Jun 2017

References

  1. Allison, TD (1990) Pollen production and plant density affect pollination and seed production in Taxus canadensis. Ecology 71(2):516–522. Available at https://doi.org/10.2307/194030510.2307/1940305
  2. Anderson, JT, Willis JH, Mitchell-Olds T (2011) Evolutionary genetics of plant adaptation. Trends in Genetics 27(7):258–266. Available at https://doi.org/10.1016/j.tig.2011.04.00110.1016/j.tig.2011.04.001
  3. Bian, FY, Su JR, Liu WD, Li SF, Lang XD (2015) The morphology of fresh seeds and germination of in vitro embryos for Taxus yunnanensis. Acta Ecol Sin 35(24):1–10. Available at https://doi.org/10.5846/stxb20140608118010.5846/stxb201406081180
  4. Blumenthal, A, Lerner HR, Werker E, Poljakoff-Mayber A (1986) Germination preventing mechanisms in Iris seeds. Ann Bot–London 58(4):551–561. Available at https://doi.org/10.1093/annbot/58.4.55110.1093/annbot/58.4.551
  5. Charlesworth, D, Wright SI (2001) Breeding systems and genome evolution. Curr Opin Genet Dev 11(6):685–690. Available at https://doi.org/10.1016/s0959-437x(00)00254-910.1016/S0959-437X(00)00254-9
  6. Chen, SY, Wu LY, Li JW, Xiang W, Zhou Y (2001) Study on genetic diversity of nature populations of Taxus yunnanensis. Scientia Silvae Sinicae 37(5):41–48.
  7. Chung, MG, Oh GS, Chung JM (1999) Allozyme variation in Korean populations of Taxus cuspidata (Taxaceae). Scand J Forest Res 14(2):103–110. Available at https://doi.org/10.1080/0282758995015282710.1080/02827589950152827
  8. Chybicki, IJ, Dering M, Iszkuło G, Meyza K, Suszka J (2016) Relative strength of fine-scale spatial genetic structure in paternally vs biparentally inherited DNA in a dioecious plant depends on both sex proportions and pollen-to-seed dispersal ratio. Heredity 117:449–459. Available at https://doi.org/10.1038/hdy.2016.6510.1038/hdy.2016.65511784327577692
  9. Chybicki, IJ, Oleksa A, Burczyk J (2011) Increased inbreeding and strong kinship structure in Taxus baccata estimated from both AFLP and SSR data. Heredity 107(6):589–600. Available at https://doi.org/10.1038/hdy.2011.5110.1038/hdy.2011.51324263621712844
  10. Curtu, AL, Craciunesc I, Enescu CM, Vidalis A, Sofletea N (2015) Fine-scale spatial genetic structure in a multi-oak-species (Quercus spp.) forest. iForest 8:324–332. Available at https://doi.org/10.3832/ifor1150-00710.3832/ifor1150-007
  11. Di Cosmo, L (2005) Confirmation of cosexuality in Taxus baccata L. Ital J Forest Mt En 60(5):641–650.
  12. Dubreuil, M, Riba M, González-Martínez SC, Vendramin GG, Sebastiani F, Mayol M (2010) Genetic effects of chronic habitat fragmentation revisited: Strong genetic structure in a temperate tree, Taxus baccata (Taxaceae), with great dispersal capability1. Am J Bot 97(2):303–310. Available at https://doi.org/10.3732/ajb.090014810.3732/ajb.090014821622391
  13. El-Kassaby, YA, Yanchuk AD (1994) Genetic diversity, differentiation, and inbreeding in Pacific yew from British Columbia. J Hered 85(2):112–117. Available at https://doi.org/10.1093/oxfordjournals.jhered.a11140710.1093/oxfordjournals.jhered.a111407
  14. Falconer, DS (1989) Introduction to quantitative genetics. Longman Scientific & Technical, New York. 3rd ed. 438p.
  15. Franceschinelli, EV, Bawa KS (2000) The effect of ecological factors on the mating system of a South American shrub species (Helicteres brevispira). Heredity 84:116–123. Available at https://doi.org/10.1046/j.1365-2540.2000.00636.x10.1046/j.1365-2540.2000.00636.x10692018
  16. Frankham, R (1995) Effective population size/adult population size ratios in wildlife: a review. Genet Res 66(2):95–107. Available at https://doi.org/10.1017/s001667230003445510.1017/S0016672300034455
  17. Frankham, R (2015) Genetic rescue of small inbred populations: meta-analysis reveals large and consistent benefits of gene flow. Mol Ecol 24(11):2610–2618. Available at https://doi.org/10.1111/mec.1313910.1111/mec.1313925740414
  18. Fu, LG, LiN, Mill RR (1999) Taxaceae. Flora of China 4:89–96.
  19. González-Martínez, SC, Dubreuil M, Riba M, Vendramin GG, Sebastiani F, Mayol M (2010) Spatial genetic structure of Taxus baccata L. in the western Mediterranean Basin: Past and present limits to gene movement over a broad geographic scale. Mol Phylogenet Evol 55(3):805–815. Available at https://doi.org/10.1016/j.ympev.2010.03.00110.1016/j.ympev.2010.03.00120211747
  20. Goudet, J (1995) FSTAT (Version 1.2): a computer program to calculate F-statistics. J Hered 86(6):485–486. Available at https://doi.org/10.1093/oxfordjournals.jhered.a11162710.1093/oxfordjournals.jhered.a111627
  21. Hai, P, Wen SZ, Li Y, Gao Y, Jiang XJ, Wang F (2014) New Taxane Diterpenoids from Taxus yunnanensis. Nat Prod Biop 4(1):47–51. Available at https://doi.org/10.1007/s13659-014-0003-910.1007/s13659-014-0003-9395697224660136
  22. Hardy, OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2(4):618–620.10.1046/j.1471-8286.2002.00305.x
  23. Hogg, KE, Mitchell AK, Clayton MR (1996) Confirmation of cosexuality in Pacific yew (Taxus brevifolia Nutt.). Great Basin Nat 56(4):377–378.
  24. Li, LF, Zhou Y, Wang DM (2005) Analysis of the endangered causes of Taxus yunnanensis. Journal of West China Forestry Science 34(3):30–34.
  25. Litkowiec, M, Plitta-Michalak BP, Lewandowski A, Iszkuło G (2015) Homogenous genetic structure in populations of Taxus baccata with varied proportions of male and female individuals. Silva Fenn 49(4):id 1236. Available at https://doi.org/10.14214/sf.123610.14214/sf.1236
  26. Loiselle, BA, Sork VL, Nason J, Graham C (1995) Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). Am J Bot 82(11):1420–1425. Available at https://doi.org/10.2307/244586910.1002/j.1537-2197.1995.tb12679.x
  27. Mace, GM, Lande R (1991) Assessing extinction threats: towards a reevaluation of IUCN threatened species categories. Conserv Biol 5(2):148–157. Available at https://doi.org/10.1111/j.1523-1739.1991.tb00119.x10.1111/j.1523-1739.1991.tb00119.x
  28. Manoel, RO, Alves PF, Dourado CL, Gaino PSC, Freitas MLM, Moraes MLT, Sebbenn AM (2012) Contemporary pollen flow, mating patterns and effective population size inferred from paternity analysis in a small fragmented population of the Neotropical tree Copaifera langsdorffii Desf. (Leguminosae-Caesalpinioideae). Conserv Genet 13(3):613–623. Available at https://doi.org/10.1007/s10592-011-0311-010.1007/s10592-011-0311-0
  29. Martín, MA, Mattioni C, Lusini I, Molina JR, Cherubini M, Drake F, Herrera MA, Villani F, Martín LM (2014) New insights into the genetic structure of Araucaria araucana forests based on molecular and historic evidences. Tree Genet Genom 10(4):839–851. Available at https://doi.org/10.1007/s11295-014-0725-110.1007/s11295-014-0725-1
  30. Miao, YC, Lang XD, Zhang ZZ, Su JR (2014) Phylogeography and genetic effects of habitat fragmentation on endangered Taxus yunnanensis in southwest China as revealed by microsatellite data. Plant Biology 16(2):365–374. Available at https://doi.org/10.1111/plb.1205910.1111/plb.1205923890056
  31. Miao, YC, Su JR, Zhang ZJ, Lang XD, Liu WD, Li SF (2015) Microsatellite markers indicate genetic differences between cultivated and natural populations of endangered Taxus yunnanensis. Bot J Linn Soc 177(3):450–461. Available at https://doi.org/10.1111/boj.1224910.1111/boj.12249
  32. Miao, YC, Su JR, Zhang ZJ, Li H, Luo J, Zhang YP (2008) Isolation and characterization of microsatellite markers for the endangered Taxus yunnanensis. Conserv Genet 9(6):1683–1685. Available at https://doi.org/10.1007/s10592-008-9532-210.1007/s10592-008-9532-2
  33. Myking, T, Vakkari P, Skrøppa T (2009) Genetic variation in northern marginal Taxus baccata L. populations. Implications for conservation. Forestry 82(5):529–539. Available at https://doi.org/10.1093/forestry/cpp02210.1093/forestry/cpp022
  34. Nevo, E, Beiles A, Ben-Shlomo R (1984) The evolutionary significance of genetic diversity: ecological, demographic and life history correlates. Lect Notes Biomath 53:13–213. Available at https://doi.org/10.1007/978-3-642-51588-0_210.1007/978-3-642-51588-0_2
  35. Ortiz, PL, Arista M, Talavera S (2002) Sex ratio and reproductive effort in the dioecious Juniperus communis subsp. alpina (Suter) Čelak. (Cupressaceae) along an altitudinal gradient. Ann Bot–London 89(2):205–211. Available at https://doi.org/10.1093/aob/mcf02810.1093/aob/mcf028423379312099351
  36. Peakall, ROD, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6(1):288–295. Available at https://doi.org/10.1111/j.1471-8286.2005.01155.x10.1111/j.1471-8286.2005.01155.x
  37. Piry, S, Luikart G, Cornuet JM (1999) Bottleneck: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90(4):502–503. Available at https://doi.org/10.1093/jhered/90.4.50210.1093/jhered/90.4.502
  38. Pollak, E (1987) On the theory of partially inbreeding populations. I. Partial selfing. Genetics 117(2):353–360.
  39. Poudel, RC, Möller M, Li DZ, Shah A, Gao LM (2014) Genetic diversity, demographical history and conservation aspects of the endangered yew tree Taxus contorta (syn. Taxus fuana) in Pakistan. Tree Genet Genom 10(3):653–665. Available at https://doi.org/10.1007/s11295-014-0711-710.1007/s11295-014-0711-7
  40. Pritchard, JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959.10.1093/genetics/155.2.945146109610835412
  41. Sjölund, MJ, Jump AS (2015) Coppice management of forests impacts spatial genetic structure but not genetic diversity in European beech (Fagus sylvatica L.). For Ecol Manag 336(15):65–71. Available at https://doi.org/10.1016/j.foreco.2014.10.01510.1016/j.foreco.2014.10.015
  42. State Forestry Bureau (1999) A list of key wild plants under state protection. Available at http://www.gov.cn/gongbao/content/2000/content_60072.htm.
  43. Vekemans, X, Hardy OJ (2004) New insights from fine-scale spatial genetic structure analyses in plant populations. Mol Ecol 13(4):921–935. Available at https://doi.org/10.1046/j.1365-294x.2004.02076.x10.1046/j.1365-294X.2004.02076.x15012766
  44. Vu, DD, Bui TTX, Nguyen MT, Vu DG, Nguyen MD, Bui VT, Huang X, Zhang Y (2016) Genetic diversity in two threatened species in Vietnam: Taxus chinensis and Taxus wallichiana. J For Res DOI: 10.1007/s11676-016-0323-1. Available at https://doi.org/10.1007/s11676-016-0323-110.1007/s11676-016-0323-1
  45. Wang, BY, Su JR, Fernando DD, Yang ZH, Zhang ZJ, Chen XM, Zhang YP (2008) Development of the male reproductive structures in Taxus yunnanensis. Plant Syst Evol 276(1):51–58. Available at https://doi.org/10.1007/s00606-008-0079-y10.1007/s00606-008-0079-y
  46. Wang, WB, Jiang YB, Wang DM, Zhou Y, Jing YB (2006) Biological and ecological characteristics of Taxus yunnanensis. Journal of West China Forestry Science 35(4):33–39.
  47. Waples, RS, Do C (2008) LDNE: a program for estimating effective population size from data on linkage disequilibrium. Mol Ecol Resour 8(4):753–756. Available at https://doi.org/10.1111/j.1755-0998.2007.02061.x10.1111/j.1755-0998.2007.02061.x21585883
  48. Wilson, P, Buonopane M, Allison TD (1996) Reproductive biology of the monoecious clonal shrub Taxus canadensis. Bull Torrey Bot Club 123(1):7–15. Available at https://doi.org/10.2307/299630110.2307/2996301
  49. Yang, L, Chen HG, Niu ZL, Shi WY (2011) A preliminary study on the seed dormancy breaking effect of germination soaking methods on Taxus yunnanensis. Hubei Agricultural Sciences 50(10):2057–2059.
  50. Yin, Y, Yu RM, Yang W, Yuan F, Yan CY, Song LY (2010) Structural characterization and anti-tumor activity of a novel heteropolysaccharide isolated from Taxus yunnanensis. Carbohydr Polym 82(3):543–548. Available at https://doi.org/10.1016/j.carbpol.2010.04.03810.1016/j.carbpol.2010.04.038
  51. Zhang, DQ, Zhou N (2013) Genetic diversity and population structure of the endangered conifer Taxus wallichiana var. mairei (Taxaceae) revealed by Simple Sequence Repeat (SSR) markers. Biochem Syst Ecol 49(13):107–114. Available at https://doi.org/10.1016/j.bse.2013.03.03010.1016/j.bse.2013.03.030
  52. Zhang, J, Yang CF, Yuan K (2012) Simultaneous Determination of 10-Deacetylbaccatin III, Cephalomannine and Taxol in Different Parts of Taxus Media with Different Growth Years by UPLC. Appl Mech Mater 108:326–330. Available at https://doi.org/10.4028/www.scientific.net/amm.108.32610.4028/www.scientific.net/AMM.108.326
DOI: https://doi.org/10.1515/sg-2016-0008 | Journal eISSN: 2509-8934 | Journal ISSN: 0037-5349
Language: English
Page range: 59 - 66
Published on: Jun 12, 2017
Published by: Johann Heinrich von Thünen Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2017 Y. C. Miao, Z. J. Zhang, J. R. Su, published by Johann Heinrich von Thünen Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.