Have a personal or library account? Click to login
Estimation of genetic parameters for height using spatial analysis in Tsuga heterophylla full-sibling family trials in British Columbia Cover

Estimation of genetic parameters for height using spatial analysis in Tsuga heterophylla full-sibling family trials in British Columbia

Open Access
|Jun 2017

References

  1. ANEKONDA, T. S. and W. J. LIBBY (1996): Effectiveness of nearest neighbor data adjustment in a clonal test of Redwood. Silvae Genet. 45(1): 46-51.
  2. CANTET, R. J. C., A. N. BIRCHMEIER, A. W. CANAZA CAYO and C. FIORETT (2005): Semiparametric animal models via penalized splines as alternatives to models with contemporary groups. J. Anim. Sci. 83: 2482-2494.
  3. CAPPA, E. P. and R. J. C. CANTET (2007): Bayesian estimation of a surface to account for a spatial trend using penalized splines in an individual-tree mixed model. Can. J. For. Res. 37: 2677-2688.10.1139/X07-116
  4. CAPPA, E.P., A. D. YANCHUK and C. V. CARTWRIGHT (2012): Bayesian inference for multi-environment spatial individual-tree models with additive and full-sib family genetic effects for large forest genetic trials. Annals of Forest Science 69: 627-640. DOI: 10.1007/s13595-011-0179-7.10.1007/s13595-011-0179-7
  5. COSTA E SILVA, J., G. W. DUTKOWSKI and A. R. GILMOUR (2001): Analysis of early tree height in forest genetic trials is enhanced by including a spatially correlated residual. Can. J. For. Res. 31: 1887-1893.
  6. DE BOOR, C. (1993): B(asic)-spline basics. Fundamental Developments of Computer-Aided Geometric Modeling. L. Piegl, ed. Academic Press, San Diego, CA.
  7. DURBAN, M., I. CURRIE and R. KEMPTON (2001): Adjusting for fertility and competition in variety trials. J. Agric. Sci. (Camb.) 136: 129-140.
  8. DUTKOWSKI, G. W., J. COSTA E SILVA, A. R. GILMOUR and G. A. LOPEZ (2002): Spatial analysis methods for forest genetic trials. Can. J. For. Res. 32: 2201-2214.
  9. DUTKOWSKI, G. W., J. COSTA E SILVA, A. R. GILMOUR, H. WELLENDORF and A. AGUIAR (2006): Spatial analysis enhances modeling of a wide variety of traits in forest genetic trials. Can. J. For. Res. 36: 1851-1870.
  10. FINLEY, A. O., S. BANERJEE, P. WALDMANN and T. ERICSSON (2009): Hierarchical spatial modeling of additive and dominance genetic variance for large spatial trial data sets. Biometrics 65: 441-451.10.1111/j.1541-0420.2008.01115.x277509518759829
  11. FOSTER, G. S. and D. T. LESTER (1983): Fifth-year height variation in western hemlock open pollinated families growing on four test sites. Can. J. For. Res. 13: 251-256.
  12. FU, Y. B., A. D. YANCHUK and G. NAMKOONG (1999): Spatial patterns of tree height variations in a series of Douglas-fir progeny trials: implications for genetic testing. Can. J. For. Res. 29: 714-723.
  13. FU, Y. B., G. P. Y. CLARKE, G. NAMKOONG and A. D. YANCHUK (1998): Incomplete block designs for genetic testing: statistical efficiencies of estimating family means. Can. J. For. Res. 28: 977-986.
  14. GILMOUR, A. R., B. J. GOGEL, B. R. CULLIS and R. THOMPSON (2006): ASReml User Guide Release 2.0 VSN International Ltd, Hemel Hempstead, HP1 1ES, UK.
  15. GREEN, P. J. and B. W. SILVERMAN (1994): Nonparametric Regression and Generalized Linear Model. Chapman & Hall, London, UK.10.1007/978-1-4899-4473-3
  16. GRONDONA, M. O., J. CROSSA, P. N. FOX and W. H. PFEIFFER (1996): Analysis of variety yield trials using 2-dimensional separable ARIMA processes. Biometrics 52: 763-770.10.2307/2532916
  17. HAMANN, A., M. KOSHY and G. NAMKOONG (2002): Improving precision of breeding values by removing spatially autocorrelated variation in forestry field experiments. Silvae Genet. 51: 210-215.
  18. HARVILLE, D. A. (1997): Matrix algebra from a statistician’s perspective. Springer-Verlag. New York.10.1007/b98818
  19. HENDERSON, C. R. (1984): Applications of Linear Models in Animal Breeding. Canada, University of Guelph, Guelph, Ont.
  20. HYNDMAN, R. J., M. L. KING, I. PITRUN and B. BILLAH (2005): Local lineal forecasts using cubic smoothing splines. Aust. N. Z. J. Stat. 47: 87-99.
  21. JAYAWICKRAMA, K. J. S. (2003): Genetic improvement and deployment of western hemlock in Oregon and Washington: Review and Future Prospects. Silvae Genet. 52(1): 26-36.
  22. JOYCE, D., R. FORD and Y. B. FU (2002): Spatial patterns of tree height variations in a black spruce farm-field progeny test and neighbors-adjusted estimations of genetic parameters. Silvae Genet. 51: 13-18.
  23. KING, J. N. (1990): The significance of geographic variation patterns for western hemlock genetic improvement. Technical Report, B.C. Ministry of Forests Research Branch, 12 p.
  24. KUSER, J. E. and K. K. CHING (1981): Provenance variation in seed weight, cotyledon number, and growth rate of western hemlock seedlings. Forest Science, 26: 463-470.10.1093/forestscience/26.3.463
  25. KUSER, J. E. and K. K. CHING (1981): Provenance variation in seed weight, cotyledon number, and growth rate of western hemlock seedlings. Can. J. For. Res. 11: 662-670.
  26. KUSNANDAR, D. and N. GALWEY (2000): A proposed method for estimation of genetic parameters on forest trees without raising progeny: critical evaluation and refinement. Silvae Genet. 49: 15-21.
  27. MAGNUSSEN, S. (1993): Bias in genetic variance estimates due to spatial autocorrelation. Theor. Appl. Genet. 86: 349-355.
  28. MAGNUSSEN , S. (1994): A method to adjust simultaneously for statial microsite and competition effects. Can. J. For. Res. 24: 985-995.
  29. POJAR, J. and A. MACKINNON (1994): Plants of the Pacific Northwest Coast, Washington, Oregon, British Columbia & Alaska. Lone Pine Publishing, Vancouver, British Columbia.
  30. POLLARD, D. F. W. and F. T. PORTLOCK (1986): Intraspecific variation in stem growth of western hemlock. Can. J. For. Res. 16: 149-151.
  31. R DEVELOPMENT CORE TEAM (2011): R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/.
  32. RUPPERT, D., M. P. WAND and R. J. CARROLL (2003): Semiparametric Regression. Cambridge Univ. Press, Cambridge, UK.10.1017/CBO9780511755453
  33. SAENZ-ROMERO, C., E. V. NORDHEIM, R. P. GURIES and P. M. CRUMP (2001): A Case Study of a Provenance/ Progeny Test Using Trend Analysis with Correlated Errors and SAS PROC MIXED. Silvae Genet. 50: 127-135.
  34. SCHUTZ, W. M. and C. C. COCKERHAM (1966): The Effect of Field Blocking on Gain from Selection. Biometrics 22(4): 843-863.10.2307/2528078
  35. SILVERMAN, B. (1986): Density Estimation for Statistics and Data Analysis, Chapman and Hall, London. SMITH, B. J. (2003): Bayesian Output Analysis Program (BOA) version 1.0 user’s manual. Available from http://www.public-health.uiowa.edu/boa/Home.html.
  36. SPIEGELHALTER, D. J., N. G. BEST, B. P. CARLIN and A. VAN DER LINDE (2002): Bayesian measures of model complexity and fit (with discussion). Journal of the Royal Statistical Society Series B 64: 583-639.10.1111/1467-9868.00353
  37. WALDMANN, P., J. HALLANDER, F. HOTI and M. J. SILLANPÄÄ (2008): Efficient MCMC implementation of Bayesian analysis of additive and dominance genetic variances in non-inbred pedigrees. Genetics 179: 1101-1112.10.1534/genetics.107.084160242986318558655
  38. WEBBER, J. E. (2000): Western hemlock: a manual for tree improvement seed production. Res. Br., B. C. Min. For., Victoria, B.C.Work Pap. 44/2000.
  39. WHITE, T. L. (1996): Genetic parameter estimates and breeding value predictions: issues and implications in tree improvement programs. In: DIETERS, M. J., MATHESON, A. C., NIKLES, D. G., HARWOOD, C. E., WALKER, S. M. (eds) Proceedings of the QFRI-IUFRO Conference Tree Improvement for Sustainable Tropical Forestry. Caloundra, Queensland, Australia, pp 110-117.
  40. WILLIAMS, E. R. and A. C. MATHESON (1994): Experimental Design and Analysis for use in Tree Improvement. CSIRO, Melbourne, Australia.
  41. WU, H. X. and A. C. MATHESON (2004): General and specific combining ability from artial diallels of radiata pine: implications for utility of SCA in breeding and deployment populations. Theor. Appl. Genet. 108: 1503-1512.
  42. YANCHUK, A. (1996): General and specific combining ability from disconnected partial diallels of coastal Douglas-fir. Silvae Genet. 45: 37-45.
  43. YE, T. Z. and K. J. S. JAYAWICKRAMA (2008): Efficiency of using spatial analysis in firest-generation coastal Douglas-fir progeny tests in the US Pacific Northwest. Tree Genetics and Genomes 4: 677-692.10.1007/s11295-008-0142-4
  44. ZAS, R. (2006): Iterative kriging for removing spatial autocorrelation in analysis of forest genetic trials. Tree Genetics and Genomes 2: 177-185.10.1007/s11295-006-0042-4
  45. ZHELEV, P., I. EKBERG, G. ERIKSSON and L. NORELL (2003): Genotype environment interactions in four full-sib progeny trials of Pinus sylvestris (L.) with varying site indices. Forest Genetics 10: 93-102.
DOI: https://doi.org/10.1515/sg-2015-0005 | Journal eISSN: 2509-8934 | Journal ISSN: 0037-5349
Language: English
Page range: 59 - 73
Submitted on: Aug 15, 2014
Published on: Jun 7, 2017
Published by: Johann Heinrich von Thünen Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2017 Eduardo Pablo Cappa, A. D. Yanchuk, C. V. Cartwright, published by Johann Heinrich von Thünen Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.