Have a personal or library account? Click to login
Cytogenetic polymorphism of english oak (Quercus robur L.) seedlings from areas with different levels of anthropogenic pollution Cover

Cytogenetic polymorphism of english oak (Quercus robur L.) seedlings from areas with different levels of anthropogenic pollution

By: V. N. Kalaev and  A. A. Popova  
Open Access
|Jun 2017

References

  1. AKOPIAN, E. (1967): Effect of different types of ionizing radiation on the occurrence of chromosomal aberrations in pea. I. Postradiation recovery. Russ. J. Genet 3(5): 45-51.
  2. ALOV, I. A. (1965): Mechanisms of mitosis pathology. Vestn Akad Med Nauk SSSR. 1966; 21(11): 3-13.
  3. ARTYUKHOV, V. G. and V. N. KALAEV (2006): Cytogenetic indices of English oak (Quercus robur L.) seminal progeny subject to radioactive radiation in the Chernobyl nuclear disaster and growing on territories with different levels of anthropogenic contamination, pp. 247-264 in 20 Years after Chernobyl Accident: past, present and future, edited by E. B. BURLAKOVA, V. I. NAIDICH, Nova Science Publishers, Inc., New York.
  4. AXELROD, D. (1983): Biogeography of oaks in the Arcto- Tertiary province. Ann. Missouri Bot. Gard. 70: 629-657.
  5. BORZAN, K., M. IDZOJTIC and H. GUTTENBERGER (1996): Standardization of gymnosperm karyotypes using Picea omorika as an example. Forest Genetics 3(3): 127-136.
  6. BUTORINA, A. and N. EVSTRATOV (1996): The first detected case of amitosis in pine. Forest Genetics 3(3): 137-139.
  7. BUTORINA, A. and V. KALAEV (1998): Diversity of Cytological Characteristics in Oak Under Normal Conditions, pp. 46-48 in Diversity and Adaptation in Oak Species. Proceedings of a conference of IUFRO Working Party 2.08.05 held Oct. 12-17, Pennsylvania, U.S.A., Pennsylvania.
  8. CASTAGNEYROL, B., L. LAGACHE, B. GIFFARD, A. KREMER and H. JACTEL (2012): Genetic diversity increases insect herbivory on oak saplings. PloS One. DOI 10.1371/journal. pone.0044247.10.1371/journal.pone.0044247342941822937168
  9. CHELIDZE, P. V. and O. V. ZATCEPINA (1988): Morphofunctional classification of nucleoli. Uspekhi Sovr. Biol. 105(2): 252-267. (In Russian)
  10. CHEN, D., X. ZHANG, H. KANG, X. SUN, S. YIN, H. DU, N. YAMANAKA, W. GAPARE, H. WU and C. LIU (2012): Phylogeography of Quercus variabilis based on chloroplast DNA sequence in East Asia: multiple glacial refugia and Mainland-migrated island population. PloS One. DOI 10.1371/journal.pone.0047268.10.1371/journal.pone.0047268348036923115642
  11. CHYBIRKO, M. I. and J. I. STEPKIN (2009): Report on the epidemiological situation in the city of Voronezh in 2008.: Rospotrebnadzor in Voronezh region, Voronezh (in Russian).
  12. GALVAN, J., L. VALLEDOR, F. GONZALEZ, R. NAVARRO CERRILO and J. JORRIN-NOVO (2012): Proteomic analysis of Holm oak (Quecus ilex subsp. Ballota [Desf.] Samp.) pollen. J Proteomics 75(9): 2736-2744.
  13. GERAS’KIN, S. and D. VASIL’EV (2005): Assessment anthropogenic impact on the population of Pinus sylvestris L. by methods Bioindication in the area of enterprise storage of radioactive waste. Russ. J. Ecology 4: 275-285.
  14. KALAEV, V. (2000): Cytogenetic monitoring of environmental pollution using plant test - objects: Ph. D.. biol. Sciences. Voronezh. (In Russian)
  15. KALAEV, V., S. KARPOVA and V. ARTYUKHOV (2010): Cyto - genetic characteristics of weeping birch (Betula pendula Roth) seed progeny in different ecological conditions. Bioremediation, Biodiversity and Bioavailability, Special Issue 1 (Tree and Forest Biodiversity) 4: 77-83.
  16. KALASHNIK, N. and S. YASOVIEVA (2012): Analysis of meiotic chromosome aberrations in Siberian spruce (Picea obovata Ledeb.) under conditions of natural and technogenic stress. Russ. J. Ecology 43(6): 440-447.
  17. LAKIN, G. F. (1990): Biometrics. Vyshaia shkola. Moscow. LIC˘INA, V., M. F. AKS˘IC´, S. COLIC´ and G. ZEC (2013): A bioassessment of soil nickel genotoxic effect in orchard planted on rehabilitated coalmine overburden. Ecotoxicol Environ Saf. 98: 374-82.
  18. LUOMAJOKI, A. (1996): Adaptation of microsporogenesis of exotic conifers in Finland. Forest Genetics 3(3): 153-160.
  19. MIILLER, M. and D. GRILL (1996): Chromosomal aberrations in ozone-impacted spruce as a test of cytological damage in forest trees. Forest Genetics 3(3): 161-166.
  20. MILYUTIN, L., E. MURATOVA and A. LARIONOVA (2004): Conifer biodiversity in Mongolia and Adjacent Regions of Russia using morphological, karyological and genetical features. Eurasian J. of Forest Research 7(2): 59-66.
  21. MULLAGULOV, R., N. RED’KINA and J. IANBAEV (2008): Allosimic polimorfism English oak (Quercus robur (Fagaceae)) in isolated populations on the eastern boundary of the range. Vestnik Orenburgs State University 2: 107-110. (In Russian)
  22. MURATOVA, E., T. SEDELNIKOVA and A. PIMENOV et al. (2007): Karyological analysis of larch species from Siberia and the Far East of Russia. Forest Science and Technology 3(2): 89-94. (In Russian)10.1080/21580103.2007.9656323
  23. OUDALOVA, A. and S. GERAS’KIN (2012): The time dynamics and ecological genetic variation of cytogenetic effects in the Scots pine populations experiencing anthropogenic impact. Biology Bulletin Reviews 2(3): 254-267.10.1134/S207908641203005X
  24. PAVLICA, M., V. BESENDORFER, J. ROSA and D. PAPES CHEMOSPHERE (2000): The cytotoxic effect of wastewater from the phosphoric gypsum depot on common oak (Quercus robur l.) and shallot (Allium cepa var. Ascalonicum). Chemosphere 41(10): 1519-27.
  25. PRUS-GL⁄ OWACKI, W., E. CHUDZIN´SKA, A. WOJNICKAPOL⁄ TORAK, L. KOZACKI and K. FAGIEWICZ (2006): Effects of heavy metal pollution on genetic variation and cytological disturbances in the Pinus sylvestris L. population. J Appl Genet. 47(2): 99-108.10.1007/BF0319460716682749
  26. RAMIEZ-VALIENTE, J., D. SANCHEZ-GOMEZ, I. ARANDA and F. VALLADARES (2010): Phenotypic plasticity and local adaptation in leaf ecophysiological traits of 13 contrasting cork oak populations under different water availabilities. Tree Physiology 30(5): 618-627.10.1093/treephys/tpq01320357344
  27. RIBEIRO, T., A. BARÃO, W. VIEGAS and L. MORAIS-CECÍLI (2008): Molecular cytogenetics of forest trees. Cytogenet Genome Res. 120(3-4): 220-7.10.1159/00012107018504350
  28. SANS, J., M. MORENO and C. ALLIENDE (1984): The nucleolus and its regulation in meristems under two proliferative kinetics. Cytobios 41(163-164): 181-190.
  29. SILVESTRINI, M., C. A. PINTO-MAGLIO, M. I. ZUCCHI and F. A. DOS SANTOS (2013): Cytogenetics and characterization of microsatellite loci for a South American pioneer tree species, Croton floribundus. Genome 56(12): 743-51.10.1139/gen-2013-015924433210
  30. SIMAKOV, E. (1983): About postradiation restoration of cytogenetic damage in seedlings of different forms of seed potatoes. Radiobiology. Radioecology 23(5): 703-706.
  31. SOBOL’, M. (2001): The role of the nucleolus in the reactions of plant cells to the action of physical environmental factors. Cytology and genetics 35(3): 72-84.
  32. SENKEVICH, E. (2007): Cytogenetics of Scots pine and birch in the area Novovoronezh on issues environmental impact assessments. Ph. D.. biol. Sciences. Voronezh. (In Russian)
  33. ZHANG, Y. (2013): Molecular characterization and genetic structure of Quercus acutissima germplasm in China using microsatellites. Mol Biol Rep. 40(6): 4083-4090.10.1007/s11033-013-2486-623459930
DOI: https://doi.org/10.1515/sg-2014-0032 | Journal eISSN: 2509-8934 | Journal ISSN: 0037-5349
Language: English
Page range: 245 - 252
Submitted on: Apr 28, 2014
Published on: Jun 1, 2017
Published by: Johann Heinrich von Thünen Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2017 V. N. Kalaev, A. A. Popova, published by Johann Heinrich von Thünen Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.