Have a personal or library account? Click to login
Visible and near infrared hyperspectral imaging reveals significant differences in needle reflectance among Scots pine provenances Cover

Visible and near infrared hyperspectral imaging reveals significant differences in needle reflectance among Scots pine provenances

Open Access
|Jun 2017

References

  1. ASNER, G. P. and R. E. MARTIN (2008): Spectral and chemical analysis of tropical forests: scaling from leaf to canopy levels. Remote Sensing of Environment 112: 3958-3970.10.1016/j.rse.2008.07.003
  2. BAJCSY, P. and P. GROVES (2004): Methodology for hyperspectral band selection. Photogrammetric Engineering and Remote Sensing Journal 7: 793-802.10.14358/PERS.70.7.793
  3. CARTER, G. A. (1993): Responses of leaf spectral reflectance to plant stress. American Journal of Botany 80: 239-43.10.1002/j.1537-2197.1993.tb13796.x
  4. CARTER, G. A. (1991): Primary and secondary effects of water content on the spectral reflectance of leaves. American Journal of Botany 78: 916-924.10.1002/j.1537-2197.1991.tb14495.x
  5. CARTER, G. A. and A. K. KNAPP (2001): Leaf optical properties in higher plants: linking spectral characteristics to stress and chlorophyll concentration. American Journal of Botany 88: 677-684.10.2307/2657068
  6. CASTRO-ESAU, K. L., G. A. SANCHEZ-AZOFEIFA and T. CAELLI (2004): Discrimination of lianas and trees with leaflevel hyperspectral data. Remote Sensing of Environment 90: 353-372.10.1016/j.rse.2004.01.013
  7. CURRAN, P. J. (1989): Remote sensing of foliar chemistry. Remote Sensing of Environment 30: 271-278.10.1016/0034-4257(89)90069-2
  8. DANUSEVIC˘IUS, D. and R. GARBRILAVIC˘IUS (2001): Variation in juvenile growth rhythm among Picea abies provenances from the Baltic states and adjacent regions. Scandinavian Journal of Forest Research 16: 305-317.10.1080/02827580152496696
  9. DANUSEVIC˘IUS, D., J. BUCHOVSKA, V. STANYS, J. B. S˘ IKS˘NIANIENE, V. MAROZAS and V. BENDOKAS (2013): DNA marker based identification of spontaneous hybrids between Pinus mugo and P. sylvestris at the Lithuanian sea-side. Nordic Journal of Botany 31: 1-9.
  10. DATT, B. (1998): Remote sensing of chlorophyll a, chlorophyll b, chlorophyll a+b, and total carotenoid content in leaves. Remote Sensing of Environment 66: 111-121.10.1016/S0034-4257(98)00046-7
  11. DE BACKER, S., P. KEMPENEERS, W. DEBRUYN and P. SCHEUNDERS (2005): Band selection for hyperspectral remote sensing. IEEE Geoscience and Remote Sensing Letters 2: 319-323.
  12. DORMLING, I. (1993): Bud dormancy, frost hardiness and frost drought in seedlings of Pinus sylvestris and Picea abies, pp. 285-298. In: Advances in cold hardiness edited by PH. LI, L. CHRISTERSSON, CRC Press.10.1201/9781351069526-20
  13. EICHE, V. (1966): Cold damage and plant mortality in experimental provenance plantations with Scots pine in northern Sweden. Studia Forestalia Suecica 36: 1-218.
  14. EISMANN, M. T. (2012): Hyperspectral Remote Sensing, SPIE Press, Bellingham, USA, 748 p.10.1117/3.899758
  15. EKBERG, I., G. ERIKSSON and I. DORMLING (1979): Photo - periodic reactions in conifer species. Holarctic Ecology 2: 255-263.
  16. EKBERG, I., G. ERIKSSON and Y. WENG (1985): Betweenand within-population variation in growth rhythm and plant height in four Picea abies populations. Studia Forestalia Suecica 167: 1-14.
  17. ERIKSSON, G. (1991): Challenges for forest geneticists. Silva Fennica 52: 257-269.10.14214/sf.a15623
  18. ERIKSSON, G., S. ANDERSSON, V. EICHE, J. IFVER and A. PERSSON (1980): Severity index and transfer effects on survival and volume production of Pinus sylvestris in northern Sweden. Studia Forestalia Suecica 156: 1-32.
  19. ERIKSSON, G., I. EKBERG, I. DORMLING and B. MATÉRN (1978): Inheritance of bud-set and bud-flushing in Picea abies (L.) Karst. Theoretical and Applied Genetics 52: 3-19.10.1007/BF00273761
  20. GARBRILAVIC˘IUS, R. and D. DANUSEVIC˘IUS (2003): Genetics and breeding of Norway spruce in Lithuania. Monograph. Lithuanian Forest Research Institute, Petrovo Ofsetas, Vilnius, 359 p. (in Lithuanian with English summary and figure, table headings).
  21. GITELSON, A. A., Y. GRITZ and M. N. MERZLYAK (2003): Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. Journal of Plant Physiology 160: 271-282.10.1078/0176-1617-00887
  22. GUYOT, G. (1989): Signatures spectrales des surfaces naturelles. Collection Teledetection Satellitaire No. 5, Paradigme, 178 p.
  23. HANNERZ, M. (1998): Genetic and seasonal variation in hardiness and growth rhythm in boreal and temperate conifers- a review and annotated bibliography. The Forest Research Institute of Sweden, Report 2, 140 p.
  24. HÄNNINEN, H. P. and PELKONEN (1989): Dormancy release in Pinus sylvestris L. and Picea abies (L.) Karst. seedlings: effects of intermittent warm periods during chilling. Trees 3: 179-184.10.1007/BF00226654
  25. HESKETH, M. and G. A. SÁNCHEZ-AZOFEIFA (2012): The effect of seasonal spectral variation on species classification in the Panamanian tropical forest. Remote Sensing of Environment 118: 73-82.10.1016/j.rse.2011.11.005
  26. HODKINSON, T. (2013): Assignment testing reveals multiple introduced source populations including potential ash hybrids (Fraxinus excelsior×F. angustifolia) in Ireland. European Journal of Forest Research 132: 195-209.10.1007/s10342-012-0667-9
  27. HOFFER, R. M. (1978): Biological and physical considerations in applying computer-aided analysis techniques to remote sensor data, pp. 55-96. In: Remote Sensing: the Quantitative Approach, edited by P. H. SWAIN, S. M. DAVIS, McGraw-Hill, New York.
  28. IM, J. and J. R. JENSEN (2008): Hyperspectral remote sensing of vegetation. Geography Compass 2: 1943-1961.10.1111/j.1749-8198.2008.00182.x
  29. KALACSKA, M., S. BOHLMAN, G. A. SANCHEZ-AZOFEIFA, K. CASTRO-ESAU and T. CAELLI (2007): Hyperspectral discrimination of tropical dry forest lianas and trees: Comparative data reduction approaches at the leaf and canopy levels. Remote Sensing of Environment 109: 406-415.10.1016/j.rse.2007.01.012
  30. KOKALY, R. F. and R. N. CLARK (1999): Spectroscopic Determination of Leaf Biochemistry Using Band-Depth Analysis of Absorption Features and Stepwise Multiple Linear Regression. Remote Sensing of Environment 67: 267-287.10.1016/S0034-4257(98)00084-4
  31. KOONSANIT, K., C. JARUSKULCHAI and A. EIUMNOH (2012): Band selection for dimension reduction in hyper - spectral image using integrated information gain and principal components analysis technique. International Journal of Machine Learning and Computing 3: 248-251.10.7763/IJMLC.2012.V2.124
  32. KOHAVI, R. (1995): A study of cross-validation and bootstrap for accuracy estimation and model selection. IJCAI 14: 1137-1145.
  33. KREMER, A. (2006): Diversity: the driving force of sustainability and evolution. Annals of Forest Science 8: 809-811.10.1051/forest:2006081
  34. Kupková, L., M. POZU°C˘KOVÁ, K. ZACHOVÁ, Z. LHOTÁKOVÁ, V. KOPAC˘KOVÁ and J. ALBRECHTOVÁ (2012): Chloro - phyll determination in Silver Birch and Scots Pine foliage from heavy metal polluted regions using spectral reflectance data. EARSeL eProceedings 11: 64-73.
  35. LEBLON, B. (1997): Soil and vegetation optical properties. Faculty of Forestry and Environmental Management University of New Brunswick, Fredericton (NB), Canada.
  36. LEINONEN, I. (1996): Dependence of dormancy release on temperature in different origins of Pinus sylvestris and Betula pendula seedlings. Scandinavian Journal of Forest Research 23: 1043-1051.10.1080/02827589609382919
  37. LILLESAND, T. M., R. W. KIEFER and J. W. CHIPMAN (2008): Remote Sensing and Image Interpretation, 6th edition, Wiley, New York, USA, 756 p.
  38. LINDER, S. (1972): Seasonal variation of pigments in needles: a Study of Scots pine and Norway spruce seedlings grown under different nursery seasonal conditions. Studia Forestalia Suecia 100: 1-30.
  39. LUTHER, J. E. and A. L. CARROLL (1999): Development of an Index of Balsam Fir Vigor by Foliar Spectral Reflectance. Remote Sensing of Environment 69: 241-252.10.1016/S0034-4257(99)00016-4
  40. MANEVSKI, K., I. MANAKOS, G. P. PETROPOULOS and CH. KALAITZIDIS (2011): Discrimination of common Mediterranean plant species using field spectroradiometry. International Journal of Applied Earth Observation and Geoinformation 13: 922-933.10.1016/j.jag.2011.07.001
  41. MARTIN, M. E. and J. D. ABER (1997): High spectral resolution remote sensing of forest canopy lignin, nitrogen, and ecosystem processes. Ecological Applications 7: 431-443.10.1890/1051-0761(1997)007[0431:HSRRSO]2.0.CO;2
  42. MASAITIS, G. (2013): The potential of hyperspectral imaging to detect forest tree species and evaluate their condition. PhD thesis, Aleksandras Stulginskis University, Akademija, Lithuania, 150 p. (in Lithuanian with English summary).
  43. MASAITIS, G., G. MOZGERIS and A. AUGUSTAITIS (2013): Spectral reflectance properties of healthy and stressed coniferous trees. iForest 6: 30-36.10.3832/ifor0709-006
  44. MASAITIS, G. and G. MOZGERIS (2012): Some peculiarities of laboratory measured hyperspectral reflectance characteristics of Scots pine and Norway spruce needles. In: Proceedings of the 18th annual international conference Research for Rural Development 2012, Vol. 2, Latvian University of Agriculture, Jelgava, 2012, p. 25-32.
  45. MCLACHLAN, G. (2004): Discriminant analysis and statistical pattern recognition. Wiley, New York, USA, 2004, 551 p.
  46. MIIDLA, H. (1989): Biochemistry of lignin formation. In The Formation of Lignin in Wheat Plants and Its Connection with Mineral Nutrition. Acta Comm. Univ. Tartu 845: 11-23.
  47. MOORTHY, I., J. MILLER and T. L. NOLAND (2008): Estimating chlorophyll concentration in conifer needles with hyperspectral data: An assessment at the needle and canopy level. Remote Sensing of Environment 112: 2824-2838.10.1016/j.rse.2008.01.013
  48. OSBORNE, A. G., T. FEARN and P. HINDLE (1993): Practical NIR spectroscopy with applications in food and beverage analysis. 2nd Edn. Longman Scientific and Technical, Harlow, 240 p.
  49. PERRY, T. O. (1971): Dormancy of trees in winter. Science 8: 29-36.10.1126/science.171.3966.29
  50. PERSSON, A. and B. PERSSON (1992): Survival, growth and quality of Norway spruce (Picea abies (L.) Karst.) provenances at the three Swedish sites of the IUFRO 1964/68 provenance experiment. Department of Forest Yield Research, Swedish University of Agricultural Sciences, Report 29, 67 p.
  51. PRAVDIN, L. F. (1964): Scots pine variation. Intraspecific Taxonomy and Selection, Moskva, 208 p. (in Russian).
  52. PULKKINEN, P. (1993): Frost hardiness development and lignification of young Norway spruce seedlings of southern and northern Finnish origin. Silva Fennica 27: 47-54.10.14214/sf.a15658
  53. ROCK, B. N., J. E. VOGELMANN, D. L. WILLIAMS, A. F. VOGELMANN and T. HOSHIZAKI (1986): Remote detection of forest damage. BioScience 36: 439-445.10.2307/1310339
  54. ROCK, B. N., D. L. WILLIAMS, D. M. MOSS, G. N. LAUTEN and M. KIM (1994): High spectral resolution field and laboratory optical reflectance measurements of red spruce and eastern hemlock needles and branches. Remote Sensing of Environment 47: 176-189.10.1016/0034-4257(94)90154-6
  55. SAVITZKY, A. and M. J. E. GOLAY (1964): Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Analytical Chemistry 36: 1627-1639.10.1021/ac60214a047
  56. SAVOLAINEN, O., F. BOKMA, T. KNÜRR, K. KÄRKKÄINEN, T. PYHÄJÄRVI and W. WACHOWIAK (2007): Adaptation of forest trees to changing climate, pp. 19-28. In: Climate change and forest genetic diversity: Implications for sustainable forest management in Europe, edited by J. KOSKELA, A. BUCK, . TEISSIER DU CROS, Bioversity International, Rome, Italy, ISBN 978-92- 9043-749-9.
  57. SHUTYAEV, A. M. and M. GIERTYCH (1998): Height growth variation in a comprehensive Eurasian provenance experiment of (Pinus sylvestris L.). Silvae Genetica 46: 332-349.
  58. SKRØPPA, T. (1982): Genetic variation in growth rhythm characteristics within and between natural populations of Norway spruce. A preliminary report. Silva Fennica 16: 160-167.
  59. SUNDBLAD, L.-G., M. ANDERSSON, P. GELADI, A. SALO - MANSON and M. SJOSTROM (2001): Fast, nondestructive measurement of frost hardiness in conifer seedlings by VIS+NIR spectroscopy. Tree Physiology 21: 751-757.10.1093/treephys/21.11.75111470661
  60. THOMASSET, M., J. F. FERNÁNDEZ-MANJARRÉS, G. C. DOUGLAS, P. BERTOLINO, N. FRASCARIALACOSTE and T. R. HODKINSON (2013): Assignment testing reveals multiple introduced source populations including potential ash hybrids (Fraxinus excelsior × F. angustifolia) in Ireland. European Journal of Forest Research 132: 195-209.10.1007/s10342-012-0667-9
  61. TREITZ, P. M. and P. J. HOWARTH (1999): Hyperspectral remote sensing for estimating biophysical parameters of forest ecosystems. Progress in Physical Geography 23: 359-390.10.1177/030913339902300303
  62. Vaiphasa, CH., S. ONGSOMWANG, T. VAIPHASA and A. K. SKIDMORE (2005): Tropical mangrove species discrimination using hyperspectral data: A laboratory study. Estuarine, Coastal and Shelf Science 65: 371-379.10.1016/j.ecss.2005.06.014
  63. WANG, Q. and P. LI (2012): Hyperspectral indices for estimating leaf biochemical properties in temperate deciduous forests: Comparison of simulated and measured reflectance data sets. Ecological Indicators 14: 56-65.10.1016/j.ecolind.2011.08.021
  64. ZARCO-TEJADA, P. J., J. R. MILLER, J. HARRON, B. HU, T. L. NOLAND, N. GOEL, G. H. MOHAMMED and P. SAMPSON (2004): Needle chlorophyll content estimation through model inversion using hyperspectral data from boreal conifer forest canopies. Remote Sensing of Environment 89: 189-199.10.1016/j.rse.2002.06.002
DOI: https://doi.org/10.1515/sg-2014-0022 | Journal eISSN: 2509-8934 | Journal ISSN: 0037-5349
Language: English
Page range: 169 - 180
Submitted on: Apr 30, 2014
Published on: Jun 1, 2017
Published by: Johann Heinrich von Thünen Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2017 Darius Danusevicius, G. Masaitis, G. Mozgeris, published by Johann Heinrich von Thünen Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.