Have a personal or library account? Click to login
Direct and Competition Additive Effects in Tree Breeding: Bayesian Estimation From an Individual Tree Mixed Model Cover

Direct and Competition Additive Effects in Tree Breeding: Bayesian Estimation From an Individual Tree Mixed Model

By: E. P. Cappa and  R. J. C. Cantet  
Open Access
|Oct 2017

References

  1. ARANGO, J., I. MISZTAL, S. TSURUTA, M. CULBERTSON and W. HERRING (2005): Estimation of variance components including competitive effects of Large White growing gilts. J. Anim. Sci. 83: 1241-1246.10.2527/2005.8361241x
  2. ARORA, V. and P. LAHIRI (1997): On the superiority of the Bayesian method over the BLUP in small area estimation problems. Statistica Sinica 7: 1053-1063.
  3. BORRALHO, N. M. G. (1995): The impact of individual tree mixed models (BLUP) in tree breeding strategies. In Proceedings of the CRC-IUFRO Conference: Eucalypts plantations: Improving fibre yield and quality. 12-24 February. 1995, Hobart, Tasmania, Australia. Edited by B. M. POTTS, N. M. G. BORRALHO, J. B. REID, R. N.
  4. CANTET, R. J. C., D. GIANOLA, I. MISZTAL, R. L. FERNANDO (1993): Estimates of dispersion parameters and of genetic and environmental trends for weaning weight in Angus cattle using a maternal animal model with genetic grouping. Livest. Prod. Sci. 34: 203-212.10.1016/0301-6226(93)90107-S
  5. CAPPA, E. P. and R. J. C. CANTET (2006): Bayesian inference for normal multiple-trait individual-tree models with missing records via full conjugate Gibbs. Can. J. For. Res. 36: 1276-1285.
  6. CASELLA, G. and E. I. GEORGE (1992): Explaining the Gibbs Sampler. Am. Stat. 46: 167-174.
  7. DEMPSTER, A. P., N. M. LAIRD and D. B. RUBIN (1977): Maximum likelihood from incomplete data via EM algorithm. Journal of the Royal Statistics Society 39: 1-38.10.1111/j.2517-6161.1977.tb01600.x
  8. DUANGJINDA, M., I. MISZTAL, J. K. BERTRAND, S. TSURUTA (2001): The empirical bias of estimates by restricted maximum likelihood, Bayesian method, and method R under selection for additive, maternal, and dominance models. J. Anim Sci. 79: 2991-2996.10.2527/2001.79122991x
  9. FOSTER, G. S., R. J. ROUSSEAU and W. L. NANCE (1998): Eastern cottonwood clonal mixing study: intergenotypiccompetition effects. Forest Ecology and Management. 112: 9-22.10.1016/S0378-1127(98)00302-8
  10. GELMAN, A., J. B. CARLIN, H. S. STERN and D. B. RUBIN (1995): Bayesian data analysis. Chapman and Hall. New York, USA.10.1201/9780429258411
  11. GRIFFING, B. (1967): Selection in reference to biological groups. I. Individual and group selection applied to populations of unordered groups. Aust. J. Biol. Sci. 20: 127-139.
  12. GRIFFING, B. (1968a): Selection in reference to biological groups. II. Consequences of selection in groups of one size when evaluated in groups of a different size. Aust. J. Biol. Sci. 21: 1163-1170.10.1071/BI9681163
  13. GRIFFING, B. (1968b): Selection in reference to biological groups. III. Generalized results of individual and group selection in terms of parent-offspring covariances. Aust. J. Biol. Sci. 21: 1171-1178.10.1071/BI9681171
  14. GWAZE, D. P. and J. A. WOOLLIAMS (2001): Making decisions about the optimal selection environment using Gibbs sampling. Theor. Appl. Genet. 103: 63-69.10.1007/s001220000502
  15. HARVILLE, D. A. (1974): Bayesian inference for variance components using only error contrasts. Biometrika 61: 383-384.10.1093/biomet/61.2.383
  16. HENDERSON, C. R. (1977): Best linear unbiased prediction of breeding values not in the model for records. J. Dairy Sci. 60: 783-787.10.3168/jds.S0022-0302(77)83935-0
  17. HINSON, K. and W. D. HANSON (1962): Competition studies in soybeans. Crop. Sci. 2: 117-123.10.2135/cropsci1962.0011183X000200020010x
  18. HOBERT, J. P. and G. CASELLA (1996): The effects of improper priors on Gibbs sampling in hierarchical linear models, J. Amer. Statist. 91: 1461-1473.
  19. JENSEN, J., C. S. WANG, D. A. SORENSEN and D. GIANOLA (1994): Bayesian inference on variance and covariance components for traits influenced by maternal and direct genetic effects, using the Gibbs sampler. Acta Agric. Scand. 44: 193-201.10.1080/09064709409410898
  20. KASS, R. E., B. P. CARLIN, A. GELMAN and R. M. NEAL (1998): Markov chain Monte Carlo in practice: a roundtable discussion. Amer. Stat. 52: 93-100.
  21. KEMPTHORNE, O. (1969): An Introduction to Genetic Statistics. Iowa State Univ. Press, Ames Iowa.
  22. LYNCH, M. and B. WALSH (1998): Genetics and Analysis of Quantitative Traits. Sinauer Associates. Sunderland M/A.
  23. MAGNUSSEN, S. (1989): Effects and adjustments of competition bias in progeny trials with single-tree plots. Forest Science 35(2): 532-547.10.1093/forestscience/35.2.532
  24. MAGNUSSEN, S. (1993) Bias in genetic variance estimates due to spatial autocorrelation. Theorical and Applied Genetics 86: 349-355.10.1007/BF00222101
  25. MUIR, W. M. and A. SCHINCKEL (2002): Incorporation of competitive effects in breeding programs to improve productivity and animal well being. CD-ROM Communication No. 14-07 in Proc. 7th World Cong. Genet. Appl. Livest. Prod., Montpellier France.
  26. MUIR, W. M. (2005): Incorporation of competitive effects in forest tree or animal breeding programs. Genetics 170: 1247-1259.10.1534/genetics.104.035956
  27. PATTERSON, H. D. and R. THOMPSON (1971): Recovery of inter-block information when block sizes are unequal. Biometrika 58: 545-554.10.1093/biomet/58.3.545
  28. RADTKE, P. J., J. A. WESTFALL and H. E. BURKHART (2003): Conditioning a distance-dependent competition index to indicate the onset of intertree competition. Forest Ecology and Management 175: 17-30.10.1016/S0378-1127(02)00118-4
  29. SILVERMAN, B. W. (1986): Density estimation for statistics and data analysis. Chapman and Hall. London.10.1007/978-1-4899-3324-9
  30. SMITH, B. J. (2003): Bayesian Output Analysis Program (BOA) version 1.0 user’s manual. Available from http://www.public-health.uiowa.edu/boa/Home.html.10.32614/CRAN.package.boa
  31. SORENSEN, D. and D. GIANOLA (2002): Likelihood, Bayesian, and MCMC Methods in Quantitative Genetics. Springer-Verlag, New York.10.1007/b98952
  32. SORIA, F., F. BASURCO, G. TOVAL, L. SILIÓ, M. C. RODRIGUEZ and M. TORO (1998): An application of Bayesian techniques to the genetic evaluation of growth traits in Eucalyptus globulus. Can. J. For. Res. 28: 1286-1294.
  33. VAN TASSELL, C. P., G. CASELLA and E. J. POLLAK (1995): Effects of Selection on Estimates of Variance Components Using Gibbs Sampling and Restricted Maximum Likelihood. J. Dairy Sci. 78: 678-692.10.3168/jds.S0022-0302(95)76680-2
  34. VAN VLECK, L. D. and J. P. CASSADY (2005): Unexpected estimates of variance components with a true model containing genetic competition effects. J. Anim. Sci. 83: 68-74.10.2527/2005.83168x
  35. WILLHAM, R. L. (1963): The covariance between relatives for characters composed of components contributed by related individuals. Biometrics 19: 18-27.10.2307/2527570
  36. WOLF, J. B. (2003): Genetic architecture and evolutionary constraint when the environment contains genes. Proc. Nat. Academy of Sciences 100: 4655-4660.10.1073/pnas.063574110015361112640144
  37. WRIGHT, A. J. (1986): Individual and group selection with competition. Theoretical and Applied Genetics 72: 256-263.10.1007/BF0026700124247843
  38. ZENG, W., S. K. GHOSH and B. LI (2004): A Blocking Gibbs Sampling Method to Detect Major Genes Affecting a Quantitative Trait for Diallel Mating Design. Genetical Research 84: 1-12.
DOI: https://doi.org/10.1515/sg-2008-0008 | Journal eISSN: 2509-8934 | Journal ISSN: 0037-5349
Language: English
Page range: 45 - 56
Submitted on: Aug 23, 2006
Published on: Oct 14, 2017
Published by: Johann Heinrich von Thünen Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2017 E. P. Cappa, R. J. C. Cantet, published by Johann Heinrich von Thünen Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.