[1] Aoki, S.; Kishimoto, K. and Sakata, M. (1981) Crack tip stress and strain singularity in thermally loaded elastic-plastic materials. J. Appl. Mech., 48, 428-429.
[5] Dolbow, J. and Gosz, M. (2002) On the computation of mixed-mode stress intensity factors in functionally graded materials. Int. J. Solids Structures, 39, 2557-2574.
[12] Jin, Z.H. and Noda, N. (1993a) Minimization of thermal stress intensity factor for a crack in a metal-ceramic mixture. Trans. American Ceramic Soc. Functionally Gradient Materials, 34, 47-54.
[13] Jin, Z.H. and Noda, N. (1993b) An internal crack parallel to the boundary of a nonhomogeneous half plane under thermal loading. Int. J. Engn. Sci., 31, 793-806.
[16] Kim, J.H. and Paulino, G.H. (2002) Finite element evaluation of mixed mode stress intensity factors in functionally graded materials. Int. J. Num. Meth. Engn., 53, 1903-1935.
[17] Kim, J.H. and Paulino, G.H. (2003a) T-stress, mixed mode stress intensity factors, and crack initiation angles in functionally graded materials: A unified approach using the interaction integral method. Computer Meth. Appl. Mech. Engn., 192, 1463-1494.
[18] Kim, J.H. and Paulino, G.H. (2003b) The interaction integral for fracture of orthotropic functionally graded materials: Evaluation of stress intensity factors. Int. J. Solids and Structures, 40, 3967-4001
[19] Kim, J.H. and Paulino, G.H. (2004) T-stress in orthotropic functionally graded materials: Lekhnitskii and Stroh formalisms. Int. J. Fracture, 126, 345-384.
[21] Larsson, S.G. and Carlsson, A.J. (1973) Influence of nonsingular stress terms and specimen geometry on small-scale yielding at crack tips in elastic-plastic materials. J. Mech. Phys. Solids, 21, 263-277.
[24] Nakamura, T. and Parks, D.M. (1982) Determination of elastic T-stresses along three-dimensional crack fronts using an interaction integral. Int. J. Solids Structures, 29, 1597-1611.
[25] Nemat-Alla, M. and Noda, N. (1996) Thermal stress intensity factor for functionally gradient half space with an edge crack under thermal load. Archive Appl. Mech., 66, 569-580.
[26] Noda, N. and Jin, Z.H. (1993a) Thermal stress intensity factors for a crack in a functionally gradient material. Int. J. Solids Structures, 30, 1039-1056.
[27] Noda, N. and Jin, Z.H. (1993b) Steady thermal stresses in an infinite nonhomogeneous elastic solid containing a crack. J. Thermal Stresses, 16, 181-196.
[28] Noda, N. and Jin, Z.H. (1995) Crack tip singularity fields in non-homogeneous body under thermal stress fields. JSME Int. Jour. Ser. A, 38, 364-369.
[30] Olsen, P.C. (1994) Determining the stress intensity factors KI, KII and the T-term via the conservation laws using the boundary element method. Engn. Fracture Mech., 49, 49-60.
[33] Phan, A.V. (2011) A non-singular boundary integral formula for determining the T-stress for cracks of arbitrary geometry. Eng. Fracture Mech. 78, 2273-2285.
[35] Paulino, G.H. and Kim, J.H. (2004) A new approach to compute T-stress in functionally graded materials by means the interaction integral method. Engn. Fracture Mechanics, 71, 1907-1950.
[39] Shah, P.D.; Tan, C.L. and Wang, X. (2006) T-stress solutions for two-dimensional crack problems in anisotropic elasticity using the boundary element method. Fatigue Fract. Engn. Mater.Struc. 29, 343-356.
[40] Sherry, A.H.; France, C.C. and Goldthorpe, M.R. (1995) Compendium of T-stress solutions for two and three dimensional cracked geometries. Fatigue Fract. Engn. Mater. Struct., 18, 141-155.
[42] Sladek, J. and Sladek, V. (1997a) Evaluations of the T-stress for interface cracks by the boundary element method. Engn. Fracture Mech., 56, 813-825.
[43] Sladek, J. and Sladek, V. (1997b) Evaluation of T-stresses and stress intensity factors in stationary thermoelasticity by the conservation integral method. Int. J. Fracture, 86, 199-219.
[46] Sladek, J., Sladek, V., Zhang, Ch., Tan, C.L. (2006) Evaluation of fracture parameters for crack problems in FGM by a meshless method. Journal Theoretical and Applied Mechanics, 44, 603-636.
[47] Smith, D.J.; Ayatollahi, M.R. and Pavier, M.J. (2001) The role of T-stress in brittle fracture for linear elastic materials under mixed-mode loading. Fatigue Fracture Engn. Material Structure, 24, 137-150.
[49] Sumpter, J.D.G. and Hancock, J.W. (1991) Shallow crack toughness of HY80 welds - an analysis based on T. Int. J. Press. Vess. Piping, 45, 207-229.
[51] Tan, C.L., Wang, X. (2003) The use ofquarter-point crack-tip elements for T-stress determination in boundary element method analysis. Eng. Fracture Mech. 70, 2247-2252.
[52] Yue, Z.Q.; Xiao, H.T. and Tham, L.G. (2003) Boundary element analysis of crack problems in functionally graded materials. Int. J. Solids and Structures, 40, 3273-3291.