Have a personal or library account? Click to login

Evaluation of Fracture Parameters for Cracks in Coupled Thermoelasticity for Functionally Graded Materials

Open Access
|Jan 2016

References

  1. [1] Aoki, S.; Kishimoto, K. and Sakata, M. (1981) Crack tip stress and strain singularity in thermally loaded elastic-plastic materials. J. Appl. Mech., 48, 428-429.
  2. [2] Barsoum, R.S. (1976) On the use of isoparametric finite elements in linear fracture mechanics. Int. J. Num. Meth. Engn. 10, 25-37.
  3. [3] Betegon, C. and Hancock, J.W. (1991) Two parameter characterization of elastic-plastic crack tip fields. J. Appl. Mech., 58, 104-110.
  4. [4] Cotterell, B. and Rice, J.P. (1980) Slightly curved or kinked cracks. Int. J. Fracture, 16, 155-169.
  5. [5] Dolbow, J. and Gosz, M. (2002) On the computation of mixed-mode stress intensity factors in functionally graded materials. Int. J. Solids Structures, 39, 2557-2574.
  6. [6] Eischen, J.W. (1987) Fracture of nonhomogeneous materials. Int. J. Fracture 34, 3-22.
  7. [7] Erdogan, F. (1995) Fracture mechanics of functionally graded materials. Compos. Eng., 5, 753-770.
  8. [8] Eshelby, J.D; Read, W.T. and Shockley, W. (1953) Anisotropic elasticity with applications to dislocations. Acta Metallurgica, 1, 251-259.
  9. [9] Gao, H. and Chiu, C.H. (1992) Slightly curved or kinked cracks in anisotropic elastic solids. Int.J. Solids Structures, 29, 947-972.
  10. [10] Gu, P. and Asaro, R.J. (1997) Cracks in functionally graded materials. Int. J. Solids and Structures, 34, 1-17.
  11. [11] Gupta, M., Alderliesten, R.C., Benedictus, R. (2015) A review of T-stress and its effects in fracture mechanics. Engng Fract Mech 134,218-241.
  12. [12] Jin, Z.H. and Noda, N. (1993a) Minimization of thermal stress intensity factor for a crack in a metal-ceramic mixture. Trans. American Ceramic Soc. Functionally Gradient Materials, 34, 47-54.
  13. [13] Jin, Z.H. and Noda, N. (1993b) An internal crack parallel to the boundary of a nonhomogeneous half plane under thermal loading. Int. J. Engn. Sci., 31, 793-806.
  14. [14] Jin, Z.H. and Noda, N. (1994) Crack tip singular fields in nonhomogeneous materials. J. Appl.Mech., 64, 738-739.
  15. [15] Kfouri, A.P. (1986) Some evaluations of the elastic T-term using Eshelby’s method. Int. J.Fracture, 30, 301-315.
  16. [16] Kim, J.H. and Paulino, G.H. (2002) Finite element evaluation of mixed mode stress intensity factors in functionally graded materials. Int. J. Num. Meth. Engn., 53, 1903-1935.
  17. [17] Kim, J.H. and Paulino, G.H. (2003a) T-stress, mixed mode stress intensity factors, and crack initiation angles in functionally graded materials: A unified approach using the interaction integral method. Computer Meth. Appl. Mech. Engn., 192, 1463-1494.
  18. [18] Kim, J.H. and Paulino, G.H. (2003b) The interaction integral for fracture of orthotropic functionally graded materials: Evaluation of stress intensity factors. Int. J. Solids and Structures, 40, 3967-4001
  19. [19] Kim, J.H. and Paulino, G.H. (2004) T-stress in orthotropic functionally graded materials: Lekhnitskii and Stroh formalisms. Int. J. Fracture, 126, 345-384.
  20. [20] Kishimoto, K.; Aoki, S. and Sakata, M. (1980) On the path independent integral - ɵ J . J. Engn.Fracture Mech., 13, 841-850.
  21. [21] Larsson, S.G. and Carlsson, A.J. (1973) Influence of nonsingular stress terms and specimen geometry on small-scale yielding at crack tips in elastic-plastic materials. J. Mech. Phys. Solids, 21, 263-277.
  22. [22] Lekhnitskii, S.G. (1963) Theory of Elasticity of an Anisotropic Body. Holden Day.
  23. [23] Leevers, P.S. and Radon, J.C. (1982) Inherent stress biaxiality in various fracture specimen geometries. Int. J. Fracture, 19, 311-325.
  24. [24] Nakamura, T. and Parks, D.M. (1982) Determination of elastic T-stresses along three-dimensional crack fronts using an interaction integral. Int. J. Solids Structures, 29, 1597-1611.
  25. [25] Nemat-Alla, M. and Noda, N. (1996) Thermal stress intensity factor for functionally gradient half space with an edge crack under thermal load. Archive Appl. Mech., 66, 569-580.
  26. [26] Noda, N. and Jin, Z.H. (1993a) Thermal stress intensity factors for a crack in a functionally gradient material. Int. J. Solids Structures, 30, 1039-1056.
  27. [27] Noda, N. and Jin, Z.H. (1993b) Steady thermal stresses in an infinite nonhomogeneous elastic solid containing a crack. J. Thermal Stresses, 16, 181-196.
  28. [28] Noda, N. and Jin, Z.H. (1995) Crack tip singularity fields in non-homogeneous body under thermal stress fields. JSME Int. Jour. Ser. A, 38, 364-369.
  29. [29] Nowacki, W. (1986), Thermoelasticity, Pergamon, Oxford.
  30. [30] Olsen, P.C. (1994) Determining the stress intensity factors KI, KII and the T-term via the conservation laws using the boundary element method. Engn. Fracture Mech., 49, 49-60.
  31. [31] Ozturk, M. and Erdogan, F. (1997) Mode I crack problem in an inhomogeneous orthotropic medium. Int. J. Engn. Sci., 35, 869-883.
  32. [32] Ozturk, M. and Erdogan, F. (1999) The mixed mode crack problem in an inhomogeneous orthotropic medium. Int. J. Fracture, 98, 243-261.
  33. [33] Phan, A.V. (2011) A non-singular boundary integral formula for determining the T-stress for cracks of arbitrary geometry. Eng. Fracture Mech. 78, 2273-2285.
  34. [34] Paulino, G.H.; Jin, Z.H. and Dodds, R.H. (2003) Failure of functionally graded materials. In: Karihaloo B, Knauss WG, editors, Comprehensive Structural Integrity, Volume 2, Elsevier Science, 607-644.
  35. [35] Paulino, G.H. and Kim, J.H. (2004) A new approach to compute T-stress in functionally graded materials by means the interaction integral method. Engn. Fracture Mechanics, 71, 1907-1950.
  36. [36] Rao, B.N. and Rahman, S. (2003) Mesh-free analysis of cracks in isotropic functionally graded materials. Engn. Fracture Mechanics, 70, 1-27.
  37. [37] Rice JR. (1974) Limitations to the small scale yielding approximation for crack tip plasticity. J Mech Phys Solids 22, 17-26.
  38. [38] Selvarathinam A.S., Goree J.G. (1998) T-stress based fracture model for cracks in isotropic materials. Engng Fract Mech 60,543-61.
  39. [39] Shah, P.D.; Tan, C.L. and Wang, X. (2006) T-stress solutions for two-dimensional crack problems in anisotropic elasticity using the boundary element method. Fatigue Fract. Engn. Mater.Struc. 29, 343-356.
  40. [40] Sherry, A.H.; France, C.C. and Goldthorpe, M.R. (1995) Compendium of T-stress solutions for two and three dimensional cracked geometries. Fatigue Fract. Engn. Mater. Struct., 18, 141-155.
  41. [41] Sih, G.C.; Paris, P.C. and Irwin, G.R. (1965) On cracks in rectilinearly anisotropic bodies. Int. J.Fracture Mechanics, 1, 189-203
  42. [42] Sladek, J. and Sladek, V. (1997a) Evaluations of the T-stress for interface cracks by the boundary element method. Engn. Fracture Mech., 56, 813-825.
  43. [43] Sladek, J. and Sladek, V. (1997b) Evaluation of T-stresses and stress intensity factors in stationary thermoelasticity by the conservation integral method. Int. J. Fracture, 86, 199-219.
  44. [44] Sladek, J.; Sladek, V. and Fedelinski, P. (1997c) Integral formulation for elastodynamic Tstresses.Int. J. Fracture, 84, 103-116.
  45. [45] Sladek, J.; Sladek, V. and Zhang, Ch. (2005) An advanced numerical method for computing elastodynamic fracture parameters in functionally graded materials. Computational Materials Science, 32, 532-543.
  46. [46] Sladek, J., Sladek, V., Zhang, Ch., Tan, C.L. (2006) Evaluation of fracture parameters for crack problems in FGM by a meshless method. Journal Theoretical and Applied Mechanics, 44, 603-636.
  47. [47] Smith, D.J.; Ayatollahi, M.R. and Pavier, M.J. (2001) The role of T-stress in brittle fracture for linear elastic materials under mixed-mode loading. Fatigue Fracture Engn. Material Structure, 24, 137-150.
  48. [48] Sumpter, J.D.G. (1993) An experimental investigation of the T-stress approach, in: Constraint Effects in Fracture, ASTM STP 1171, 429-508.
  49. [49] Sumpter, J.D.G. and Hancock, J.W. (1991) Shallow crack toughness of HY80 welds - an analysis based on T. Int. J. Press. Vess. Piping, 45, 207-229.
  50. [50] Suresh, S. and Mortensen, A. (1998) Fundamentals of Functionally Graded Materials. Institute of Materials, London.
  51. [51] Tan, C.L., Wang, X. (2003) The use ofquarter-point crack-tip elements for T-stress determination in boundary element method analysis. Eng. Fracture Mech. 70, 2247-2252.
  52. [52] Yue, Z.Q.; Xiao, H.T. and Tham, L.G. (2003) Boundary element analysis of crack problems in functionally graded materials. Int. J. Solids and Structures, 40, 3273-3291.
  53. [53] Williams, M.L. (1957) On the stress distribution at the base of stationary crack. J. Appl. Mech., 24, 109-114.
  54. [54] Williams, J.G. and Ewing, P.D. (1972) Fracture under complex stress - the angled crack problem.J. Fracture Mech., 8, 441-446.
DOI: https://doi.org/10.1515/scjme-2016-0004 | Journal eISSN: 2450-5471 | Journal ISSN: 0039-2472
Language: English
Page range: 57 - 76
Published on: Jan 29, 2016
Published by: Slovak University of Technology in Bratislava
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2016 M. Repka, J. Sládek, V. Sládek, M. Wünsche, published by Slovak University of Technology in Bratislava
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.