[3] Benatta, M.A, Mechab, I., Tounsi, A., Adda Bedia, E.A. Static analysis of functionally graded short beams including warping and shear deformation effects. Computational Materials Science (2008)44: 765-773.
[4] Kadoli, R., Akhtar, K., Ganesan, N. Static analysis of functionally graded beams using high order shear deformation theory. Applied Mathematical Modelling (2008) 32: 2509-2525
[5] Giunta, G., Belouettar, S., Carrera, E. Analysis of FGM Beams by Means of Classical and Advanced Theories. Mechanics of Advanced Materials and Structures (2010) 17: 622-635.
[6] Kang. Y.A., Li, X.F. Large Deflections of a Non-linear Cantilever Functionally Graded Beam. Journal of Reinforced Plastics and Composites (2010) 29: 1761-1774.
[8] Asghari, M., Rahaeifard, M., Kahrobaiyan M.H., Ahmadian, M.T. The modified couple stress functionally graded Timoshenko beam formulation. Material and Design (2011) 32: 1435-1443
[9] Kocaturk, T., Simsek, M., Akbas, S.D. Large displacement static analysis of a cantilever Timoshenko beam composed of functionally graded material. Science and Engineering of Composite Materials (2011) 18: 21-34.
[11] Ma. L.S., Lee, D.W. Exact solutions for nonlinear static responses of a shear deformable FGM beam under an in-plane thermal loading. European Journal of Mechanics A/Solids (2012) 31: 13-20.
[12] Menaa, R., Tounsi, A., Mouaici, F., Mechab, I., Zidi, M., Bedia, E.A.A. Analytical Solutions for Static Shear Correction Factor of Functionally Graded Rectangular Beams. Mechanics of Advanced Materials and Structures (2012) 19: 641-652.
[13] Zhou, Li, S.R., Wan, Z.Q., Zhang, P. Relationship between Bending Solutions of FGM Timoshenko Beams and Those of Homogenous Euler-Bernoulli Beams. Applied Mechanics and Materials: Progress in Structures, PTS 1-4 (2012) 166-169: 2831-2836.
[14] Soleimani, A., Saadatfar, M. Numerical Study of Large Deflection of Functionally Graded Beam with geometry Nonlinearity. Advanced Material Research: MEMS, Nano and Smart Systems, PTS 1-6 (2012) 403-408: 4226-4230
[15] Birsan, M., Altenbach, H., Sadowski, T., Eremeyev, V.A., Pietras, D. deformation analysis of functionally graded beams by the direct approach. Composites: Part B (2012) 43: 1315-1328
[16] Mohanty, S.C., Dash, R.R., Rout, T. Static and Dynamic Stability of Functionally Graded Timoshenko Beam. International Journal of Structural Stability and Dynamics (2012) 12.
[19] Ansari, R., Gholami, R., Faghih Shojaei, M., Mohammadi, V., Sahmani, S. Size-dependent bending, buckling and free vibration of functionally graded Timoshenko nicrobeams based on the most general strain gradient theory. Composite Structure (2013) 100: 385-397.
[20] Zhang, Da-Guang. Nonlinear bending analysis of FGM beams based on physical neutral surface and high order shear deformation theory. Composite Structures (2013) 100: 121-126.
[22] Zamanzadeh M., Rezazadeh G., Jafarsadeghi-poornaki, I., Shabani, R. Static and dynamic stability modeling of a capacitive FGM micro-beam in presence of temperature changes. Applied Mathematical Modelling (2013) 37: 6964-6978.
[25] Akgoz, B., Civalek, O. Buckling analysis of functionally graded microbeams based on the strain gradient theory. Acta Mechanica (2013) 224: 2185-2201.
[26] Zhang, B., He, Y., Liu, D., Gan, Z., Shen, L. A novel size-dependent functionally graded curved microbeam model based on the strain gradient elasticity theory. Composite Structures (2013) 106: 374-392.
[27] Zhang. D.G. Thermal post-buckling and nonlinear vibration analysis of FGM beams based on physical neutral surface and high order shear deformation theory. Meccanica (2014) 49: 283-293.
[28] Li, Y.L., Meguid, S.A., Fu, Y.M., Xu, D.L. Nonlinear analysis of thermally and electrically actuated functionally graded material microbeam. Proceedings of the Royal Society a Mathematical Physical and Engineering sciences (2014) 470.
[29] Shen H-S., Wang, Z-X. Nonlinear analysis of shear deformable FGM beams resting on elastic foundation in thermal environments. International Journal of Mechanical Sciences (2014) 81: 195-206.
[30] Hadji, L., Daouadji, T.H., Tounsi, A., Bedia, E.A. A higher order shear deformation theory for static and free vibration of FGM beam. Steel and Composite Structures (2014) 16: 507-519.
[33] Sitar. M., Kosel, F., Brojan, M. Large deflections of nonlinearly elastic functionally graded composite beams. Archives of Civil and Mechanical Engineering (2014) 14: 700-709.
[34] Cai, K., Gao, D.Y., Qin, Q.H. Postbuckling analysis of a nonlinear beam with axial functionally graded material. Journal of Engineering Mathematics (2014) 88: 121-136.
[35] Chu, P., Li, X.-F., Wang, Z.-G., Lee, K.Y. Double cantilever beam model for functionally graded materials based on two-dimensional theory of elasticity. Engineering Fracture Mechanics (2015) 135: 232-244.
[37] Chakraborty, A., Gopalakrishnan, S., Reddy, J.N. A new beam finite element for the analysis of functionally graded materials. International Journal of Mechanical Sciences (2003) 45: 519-539.
[39] Murin, J., Aminbaghai M., Kutis, V. Exact solution of the bending vibration problem of the FGM beam with variation of material properties. Engineering Structures (2010) 32: 1631-1640.
[40] Aminbaghai, M., Murin, J., Kutis V. Modal analysis of the FGM-beams with continuous transversal symmetric and longitudinal variation of material properties with effect of large axial force. Engineering Structures (2012)34: 314-329.
[41] Murin, J., Aminbaghai, M., Kutis, V., Hrabovsky, J. Modal analysis of the FGM beams with effect of axial force under longitudinal variable elastic Winkler foundation. Engineering Structures (2013) 49: 234-247.
[42] Murin, J., Aminbaghai, M., Hrabovsky, J., Kutis, V., Kugler St. Modal analysis of the FGM beams with effect of the shear correction function. Composites: Part B (2013) 45:1575-1582.
[43] Kutis, V., Murin, J., Belak, R., Paulech, J. Beam element with spatial variation of material properties for multiphysics analysis of functionally graded materials. Computers and Structures (2011)89: 1192 - 1205.
[44] Rubin, H. Analytische Berechnung von Stäben und Stabwerken mit stetiger Veränderlichkeit von Querschnitt, elastischer Bettung und Massenbelegung nach Theorie erster und zweiter Ordnung, Baustatik - Baupraxis 7. Berichte der 7. Fachtagung "Baustatik - Baupraxis" Aachen/Deutschland 18.-19. März 1999. Balkema 1999, Abb., Tab.S.135-145.
[45] Rubin, H. Solution of differential equations of arbitrary order with polynomial coefficients and application to a statics problem ZAMM (1996)76: 105-117.
[49] Reuter, T., Dvorak, G.J. Micromechanical models for graded composite materials: Ii.Thermomechanical loading. J. of the Mechanics and Physics of Solids (1998) 46:1655-1673.
[52] Simsek, M. Vibration analysis of a functionally graded beam under a moving mass by using different beam theories, Composite Structures (2010) 92: 904-917.
[53] Rout, T. On the dynamic stability of functionally graded material under parametric excitation.PhD thesis. National Institute of Technology Rourkela, India. (2012).
[54] Kutis, V., Murin, J., Belak, R., Paulech, J. Beam element with spatial variation of material properties for multiphysics analysis of functionally graded materials. Computers and Structures (2010) 89: 1192-1205.
[55] Murin, J., Kugler, S., Aminbaghai, M., Hrabovsky, J., Kutis, V., Paulech, J. Homogenization of material properties of the FGM beam and shells finite elements. In.: 11th World Congress on Computational mechanics (WCCM XI), Barcelona, 2014.
[56] Murin, J., Aminbaghai, M., Hrabovsky, J., Kutis, V., Paulech, J., Kugler, S. A new FGM beam finite element for modal analysis. In.: 11th World Congress on Computational mechanics (WCCM XI), Barcelona, 2014.
[57] Murin, J., Kugler, S., Aminbaghai, M., Hrabovsky, J., Kutis, V., Paulech, J. Homogenization of material properties of the FGM beam and shell finite elements. In.: 11th World Congress on Computational mechanics (WCCM XI), Barcelona, 2014.
[58] Murín, J., Hrabovský, J., Kutiš, V., Paulech, J.Shear correction function derivation for the FGM beams. In: 2nd International Conference on Multi-scale Computational Methods for solid and Fluids. 10. 6- 12. 6.2015, Sarajevo, Bosnia and Hercegovina, (2015).
[59] Murin, J., Aminbaghai, M., Hrabovsky, J., Kutis, V. Kugler, S. Effect of the Shear Correction Function in the FGM Beams Modal Analysis. In Proceedings of the 15th European Conference on Composite Materials. 24-28 June 2012, Venice, Italy, (2012) ISBN 978-88-88785-33-2.