Have a personal or library account? Click to login
Fault Location in Distribution Network Based on Phasor Measurement Units (PMU) Cover

Fault Location in Distribution Network Based on Phasor Measurement Units (PMU)

Open Access
|Nov 2019

References

  1. [1] Saha, M.M., Izykowski, J.J. and Rosolowski, E., 2009. Fault location on power networks. Springer Science & Business Media.
  2. [2] Parmar, S., 2015. Fault Location Algorithms for Electrical Power Transmission Lines.
  3. [3] Takagi, T., Yamakoshi, Y.A.M.A.U.R.A., Yamaura, M., Kondow, R. and Matsushima, T., 1982. Development of a new type fault locator using the one-terminal voltage and current data. IEEE Transactions on Power apparatus and systems, (8), pp.2892-2898.
  4. [4] Djuric, M.B., Radojevic, Z.M. and Terzija, V.V., 1998. Distance protection and fault location utilizing only phase current phasors. IEEE Transactions on Power Delivery, 13(4), pp.1020-1026.
  5. [5] Eriksson, L., Saha, M.M. and Rockefeller, G.D., 1985. An accurate fault locator with compensation for apparent reactance in the fault resistance resulting from remore-end infeed. IEEE Transactions on Power Apparatus and Systems, (2), pp.423-436.
  6. [6] Novosel, D., Hart, D.G., Udren, E. and Garitty, J., 1996. Unsynchronized two-terminal fault location estimation. IEEE transactions on Power Delivery, 11(1), pp.130-138.
  7. [7] Silveira, E.G. and Pereira, C., 2007. Transmission line fault location using two-terminal data without time synchronization. IEEE Transactions on Power Systems, 22(1), pp.498-499.
  8. [8] Lin, Y.H., Liu, C.W. and Chen, C.S., 2004. A new PMU-based fault detection/location technique for transmission lines with consideration of arcing fault discrimination-part I: theory and algorithms. IEEE Transactions on power delivery, 19(4), pp.1587-1593.
  9. [9] Izykowski, J., Molag, R., Rosolowski, E. and Saha, M.M., 2006. Accurate location of faults on power transmission lines with use of two-end unsynchronized measurements. IEEE Transactions on Power Delivery, 21(2), pp.627-633.
  10. [10] Izykowski, J., Rosolowski, E., Balcerek, P., Fulczyk, M. and Saha, M.M., 2011. Accurate noniterative fault-location algorithm utilizing two-end unsynchronized measurements. IEEE transactions on power delivery, 26(2), pp.547-555.
  11. [11] Johns, A.T. and Jamali, S., 1990, November. Accurate fault location technique for power transmission lines. In IEE Proceedings C (Generation, Transmission and Distribution) (Vol. 137, No. 6, pp. 395-402). IET Digital Library.
  12. [12] Brahma, S.M. and Girgis, A.A., 2004. Fault location on a transmission line using synchronized voltage measurements. IEEE Transactions on Power Delivery, 19(4), pp.1619-1622.
  13. [13] Al-Dabbagh, M. and Kapuduwage, S.K., 2005. Using instantaneous values for estimating fault locations on series compensated transmission lines. Electric Power Systems Research, 76(1-3), pp.25-32.
  14. [14] Jiang, Q., Li, X., Wang, B. and Wang, H., 2012. PMU-based fault location using voltage measurements in large transmission networks. IEEE transactions on power delivery, 27(3), pp.1644-1652.
  15. [15] Preston, G., Radojević, Z.M., Kim, C.H. and Terzija, V., 2011. New settings-free fault location algorithm based on synchronized sampling. IET Generation, Transmission & Distribution, 5(3), pp.376-383.
  16. [16] Cheong, W.J. and Aggarwal, R.K., 2004. A novel fault location technique based on current signals only for thyristor-controlled series compensated transmission lines using wavelet analysis and self-organizing map neural networks.
  17. [17] Takani, H., Kurosawa, Y., Imai, S. and Inukai, M., 2004, April. Analysis and evaluation of multi-terminal fault location using actual fault data. In 2004 Eighth IEE International Conference on Developments in Power System Protection (Vol. 1, pp. 208-211). IET.
  18. [18] Brahma, S.M., 2005. Fault location scheme for a multi-terminal transmission line using synchronized voltage measurements. IEEE Transactions on Power Delivery, 20(2), pp.1325-1331.
  19. [19] Izykowski, J., Rosolowski, E., Saha, M.M., Fulczyk, M. and Balcerek, P., 2007. A fault-location method for application with current differential relays of three-terminal lines. IEEE Transactions on power delivery, 22(4), pp.2099-2107.
  20. [20] Liao, Y., 2008. Fault location for single-circuit line based on bus-impedance matrix utilizing voltage measurements. IEEE Transactions on Power Delivery, 23(2), pp.609-617.
  21. [21] John Grainger, J. and Stevenson Jr, W., 2003. D. Power System Analysis.
  22. [22] Rajeev, A., Angel, T.S. and Khan, F.Z., 2015, June. Fault location in distribution feeders with optimally placed PMU's. In 2015 International Conference on Technological Advancements in Power and Energy (TAP Energy) (pp. 438-442). IEEE.
  23. [23] IEEE Std C37.114 (2005) IEEE guide for determining fault location on AC transmission and distribution lines. IEEE Power Engineering Society Publ., New York.
  24. [24] Dashtdar, M., Dashti, R., and Shaker, H.R., 2018, May. Distribution network fault section identification and fault location using artificial neural network. In 2018 5th International Conference on Electrical and Electronic Engineering (ICEEE) (pp. 273-278). IEEE
  25. [25] Dashtdar, Masoud. “Fault Location in Distribution Network Based on Fault Current Analysis Using Artificial Neural Network.” Journal of Electrical & Computer Engineering 1.2 (2018): 18-32.
  26. [26] Dashtdar, Majid, Masoud Dashtdar. “Fault Location in the Transmission Network Based on the Analysis of the Recorded Current by the Relay Using a Discrete Wavelet Transform.” 2rd International Conference on Electrical Engineering, Mechanical Engineering, Computer Science and Engineering. (2019).
  27. [27] Majid Dashtdar, Masoud Dashtdar, Fault Location in the Transmission Network Using a Discrete Wavelet Transform, American Journal of Electrical and Computer Engineering. Vol. 3, No. 1, 2019, pp. 30-37. DOI: 10.11648/j.ajece.20190301.14.
  28. [28] Vatu R., Ceaki O., Golovanov N., Porumb R., Seritan G. - Analysis of storage technologies with smart grid framework, UPEC 2014, 49th International Universities’ Power Engineering Conference, 2-5 Septembrie, Cluj-Napoca, Romania, ISBN 978-1-4799-6556-4, WOS:000364087800212.
  29. [29] K. Panagiotis, E. Lambros (Eds.), Electricity Distribution, Intelligent Solutions for Electricity Transmission and Distribution Networks, Springer-Verlag Berlin Heidelberg, 2016, DOI 10.1007/978-3-662-49434-9, ISBN 978-3-662-49434-9.
  30. [30] Ceaki O., Vatu R., Mancasi M., Porumb R., Seritan G. Analysis of Electromagnetic Disturbances for Grid-Connected PV - MEPS 2015, 5th International Conference on Modern Electric Power Systems, 6-9 July 2015, Poland, Wroclaw, WOS:000380485200013.
DOI: https://doi.org/10.1515/sbeef-2019-0019 | Journal eISSN: 2286-2455 | Journal ISSN: 1843-6188
Language: English
Page range: 38 - 43
Published on: Nov 21, 2019
Published by: Valahia University of Targoviste
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2019 Majid Dashtdar, Masoud Dashtdar, published by Valahia University of Targoviste
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.