References
- [1] De Andrade, L., De Leão, and T. Ponce., “Impedance based fault location analysis for transmission lines”, Transmission and Distribution Conference and Exposition (T&D), 2012 IEEE PES.
- [2] Dashtdar, Masoud, Rahman Dashti, and Hamid Reza Shaker. “Distribution network fault section identification and fault location using artificial neural network.” 2018 5th International Conference on Electrical and Electronic Engineering (ICEEE). IEEE, 2018.
- [3] Lopes FV, Kusel BF, Silva KM., “Traveling Wave-Based Fault Location on Half-Wavelength Transmission Lines”, IEEE Latin America Transactions 14.1 (2016).
- [4] Bo ZQ, Weller G, Redfern MA, “Accurate fault location technique for distribution system using fault-generated high-frequency transient voltage signals”, Generation, Transmission and Distribution, IEE Proceedings-. Vol. 146. No. 1. IET, 1999.
- [5] Rao A, Bogale B, “Accurate Fault Location Technique on Power Transmission Lines with use of Phasor Measurements”, International Journal of Engineering Research and Technology. Vol. 4. No. 02 (February-2015). ESRSA Publications, 2015.
- [6] Xu Z, Zhang Z, “What accuracy can we expect from the single-ended fault locator?”, Protective Relay Engineers, 2015 68th Annual Conference for. IEEE, 2015.
- [7] Venugopal M, Tiwari C, “A novel algorithm to determine fault location in a transmission line using PMU measurements”, Smart Instrumentation, Measurement and Applications (ICSIMA), 2013 IEEE International Conference on. IEEE, 2013.
- [8] Elkalashy NI, Kawady TA, Khater WM, Taalab AM, “Unsynchronized Fault-Location Technique for Double-Circuit Transmission Systems Independent of Line Parameters”, IEEE Transactions on Power Delivery.2015.
- [9] Dashtdar, Masoud. “Fault Location in Distribution Network Based on Fault Current Analysis Using Artificial Neural Network.” Journal of Electrical & Computer Engineering 1.2 (2018): 18-32.
- [10] Magnago, F. H. and Abur, A., “Fault Location Using Wavelet”, IEEE Trans. on Power Delivery, Vol. 13, No. 4, PP. 1475-1480, October 1998.
- [11] Chiradeja, Pathomthat, and Atthapol Ngaopitakkul. “Classification of Lightning and Faults in Transmission Line Systems Using Discrete Wavelet Transform.” Mathematical Problems in Engineering 2018 (2018).
- [12] Chiradeja, Pathomthat, and Atthapol Ngaopitakkul. “Classification of Lightning and Faults in Transmission Line Systems Using Discrete Wavelet Transform.” Mathematical Problems in Engineering 2018 (2018).
- [13] Chen, Yann Qi, Olga Fink, and Giovanni Sansavini. “Combined fault location and classification for power transmission lines fault diagnosis with integrated feature extraction.” IEEE Transactions on Industrial Electronics 65.1 (2018): 561-569.
- [14] Wang, Mei, Changfeng Xu, and Huimin Lu. “Fault Location Without Wave Velocity Influence Using Wavelet and Clark Transform.” Artificial Intelligence and Robotics. Springer, Cham, 2018. 321-326.
- [15] Abraham, Sherura. “IMPROVING FAULT LOCATION OF THE ARC REFLECTION METHOD USING THE CONTINUOUS WAVELET TRANSFORM.” (2018).
- [16] Sarkar, Animesh, and Bikash Patel. “RBF Neural Network-Based Wavelet Packet Energy-Aided Fault Localization on a Hybrid Transmission Line.” Advances in Communication, Devices and Networking. Springer, Singapore, 2018. 807-815.
- [17] Saini, Makmur, et al. “Algorithm for Fault Location and Classification on Parallel Transmission Line using Wavelet based on Clarke’s Transform.” International Journal of Electrical and Computer Engineering (IJECE) 8.2 (2018): 699-710.
- [18] Dashtdar, Majid, Masoud Dashtdar. “Fault Location in the Transmission Network Based on the Analysis of the Recorded Current by the Relay Using a Discrete Wavelet Transform.” (2019).
- [19] Dashtdar, Majid, and Masoud Dashtdar. “Fault Location in the Transmission Network Using a Discrete Wavelet Transform.” American Journal of Electrical and Computer Engineering 3, no. 1 (2019): 30-37.
- [20] Kapoor, Gaurav. “A Fault-location Evaluation Method of a 330 kV Three-Phase Transmission Line by Using Discrete Wavelet Transform.” International Journal of Engineering Design & Analysis 1.1 (2018): 5-10.