Have a personal or library account? Click to login
Determination of Kinetic Parameters for the Thermal Decomposition of Parthenium hysterophorus Cover

Determination of Kinetic Parameters for the Thermal Decomposition of Parthenium hysterophorus

Open Access
|Feb 2018

References

  1. [1] Raghubanshi A. S., Rai L., Gaur J. P., Shing J. S. Invasive al species and biodiversity in India. Curr. Sci. India. 2005:88(2):539-540.10.1136/bmj.2.3325.539-b
  2. [2] Evans H. C. Parthenium hysterophorus, a review of its weed status and the possibilities for biological control. Biocontrol News and Information 1997:18(3):89N-98N.
  3. [3] Levine J. M., Vila M., D’Antonio C. M., Dukes J. S., Grigulis K., Lavorel S. Mechanisms underlying the impacts of exotic plant invasions. Proc. R. Soc. B 2003:270:775-781. doi: 10.1098/rspb.2003.232710.1098/rspb.2003.2327169131112737654
  4. [4] Belnap J., Phillips S. L. Soil biota in an ungrazed grassland: Response to annual grass (Bromus tectorum) invasion. Ecol. Appl. 2001:11(5):1261-1275. doi: 10.2307/306091810.2307/3060918
  5. [5] Zavaleta E. Valuing ecosystem services lost to Tamarix invasion in the United States. Invasive Species in a Changing World. Washington: Island Press, 2000.
  6. [6] D’Antonio C. M. Mechanisms controlling invasion of costal plant communities by the alien succulent Carpobrotus edulis. Ecology 1993:74(1):83-95. doi: 10.2307/193950310.2307/1939503
  7. [7] Kourtev P. S., Ehrenfeld J. G., Huang W. Z. Effects of exotic plant species on soil properties in hardwood forests of New Jersey. Water, Air, and Soil Pollution 1998:105:493-501. doi: 10.1023/A:100503710549910.1023/A:1005037105499
  8. [8] Dassonville N., Vanderhoeven S., Vanparys V., Hayez M., Gruber W., Meerts P. Impacts of alien invasive plants on soil nutrients are correlated with initial site conditions in NW Europe. Oecologia 2008:157:131-140. doi: 10.1007/s00442-008-1054-610.1007/s00442-008-1054-618491146
  9. [9] Ehrenfeld J. G. Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 2003:6:503-523. doi: 10.1007/s10021-002-0151-310.1007/s10021-002-0151-3
  10. [10] European Environment Agency (EEA). Europe 2020: a strategy for smart, sustainable and inclusive growth 2010.
  11. [11] Ministry of New Renewable Energy. Biomass power and cogeneration programme, 2012. Available: http://mnre.gov.in/schemes/grid-connected/biomass-powercogen
  12. [12] Dhaundiyal A., Gupta V. K. The analysis of pine needles as a substrate for gasification. J. Water, Energy Environ. 2014:15:73-81. doi: 10.3126/hn.v15i0.1129910.3126/hn.v15i0.11299
  13. [13] Di Blasi C. Combustion and gasification rates of lignocellulosic chars. Progress in Energy and Combustion Science 2009:35(2):121-140. doi: 10.1016/j.pecs.2008.08.00110.1016/j.pecs.2008.08.001
  14. [14] White J. E., Catallo W. J., Legendre B. L. Biomass pyrolysis kinetics: A comparative critical review with relevant agricultural residue case studies. Journal of Analytical and Applied Pyrolysis 2011:91(1):1-33. doi: 10.1016/j.jaap.2011.01.00410.1016/j.jaap.2011.01.004
  15. [15] Zhu H. M., Yan J. H., Jiang X. G., Lai Y. E., Cen K. F. Study on pyrolysis of typical medical waste materials by using TG-FTIR analysis. Journal of Hazardous Materials 2008:153:670-676. doi: 10.1016/j.jhazmat.2007.09.01110.1016/j.jhazmat.2007.09.011
  16. [16] Koreoova Z., Juma M., Annus J., Markos J., Jelemensky L. Kinetics of pyrolysis and properties of carbon black from a scrap tire. Chemical Papers 2006:60(6):422-426. doi: 10.2478/s11696-006-0077-x10.2478/s11696-006-0077-x
  17. [17] Quan C., Li A., Gao N. Thermogravimetric analysis and kinetic study on large particles of printed circuit board wastes. Waste Management 2009:29(8):2353-2360. doi: 10.1016/j.wasman.2009.03.02010.1016/j.wasman.2009.03.020
  18. [18] Folgueras M. B., Diaz R. M., Xiberta J., Prieto I. Thermogravimetric analysis of the co-combustion of coal and sewage sludge. Fuel 2003:82:2051-2055. doi: 10.1016/S0016-2361(03)00161-310.1016/S0016-2361(03)00161-3
  19. [19] Mason D., Gandhi K. Formulas for calculating the calorific value of coal and coal chars: Development, tests, and uses. Fuel Processing Technology 1983:7(1):11-22. doi: 10.1016/0378-3820(83)90022-X10.1016/0378-3820(83)90022-X
  20. [20] Brown M., Dollimore D., Galwey A. K. Reactions in the Solid State. Comprehensive Chemical Kinetics (vol. 22). Amsterdam: Elsevier, 1980.
  21. [21] Jankovic B., Kolar-Anic L., Smiciklas I., Dimovic S., Arandelovic D. The nonisothermal thermogravimetric tests of animal bones combustion. Part. I. Kinetic analysis. Thermochimica Acta 2009:495:129-138. doi: 10.1016/j.tca.2009.06.01610.1016/j.tca.2009.06.016
  22. [22] Ravi P., Vargeese A. A., Tewari S. P. Isoconversional kinetic analysis of decomposition of nitropyrazoles. Thermochimica Acta 2012:550:83-89. doi: 10.1016/j.tca.2012.10.00310.1016/j.tca.2012.10.003
  23. [23] Vyazovkin S., Sbirrazzuoli N. Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol. Rapid Commun 2006:27:1515-1532. doi: 10.1002/marc.20060040410.1002/marc.200600404
  24. [24] Friedman H. L. Kinetics of thermal degradation of char-forming plastics from thermogravimetry Application to phenolic plastic. J. Polym. Sci. 1964:6:183-195. doi: 10.1002/polc.507006012110.1002/polc.5070060121
  25. [25] Ozawa T. A new method of analyzing thermogravimetric data. Bull. Chem. Soc. Japan 1965:38(11):1881-1886. doi: 10.1246/bcsj.38.188110.1246/bcsj.38.1881
  26. [26] Flynn J. H., Wall L. A. General treatment of the thermogravimetry of polymers. J. Res. Nat. Bur. Standards 1966:70A(6):487-523. doi: 10.6028/jres.070A.04310.6028/jres.070A.043662470931824016
  27. [27] Standard Test Method for Arrhenius Kinetic Constants for Thermally Unstable Materials. ANSI/ASTM E698 - 79. ASTM: Philadelphia, 1979.
  28. [28] Kissinger H. E. Reaction Kinetics in Differential Thermal Analysis. Anal. Chem. 1957:29(11):1702-1706. doi: 10.1021/ac60131a04510.1021/ac60131a045
  29. [29] Doyle C. D. Kinetic analysis of thermogravimetric data. J. Appl. Polym. Sci. 1961:5:285-292. doi: 10.1002/app.1961.07005150610.1002/app.1961.070051506
  30. [30] Sbirrazzuoli N., Vincent L., Mija A., Guigo N. Integral, differential and advanced isoconversional methods: complex mechanisms and isothermal predicted conversion-time curves. Chemom. Intell. Lab. Syst. 2009:96:219-226. doi: 10.1016/j.chemolab.2009.02.00210.1016/j.chemolab.2009.02.002
  31. [31] Coats A. W., Redfern J. P. Kinetic parameters from thermogravimetric data. Nature 1964:201:68-69. doi: 10.1038/201068a010.1038/201068a0
  32. [32] Bahng M. K., Mukarakate C., Robichaud D. J., Nimlos M. R. Current technologies for analysis of biomass thermochemical processing: a review. Anal. Chim. Acta. 2009:651:117-138. doi: 10.1016/j.aca.2009.08.01610.1016/j.aca.2009.08.01619782803
  33. [33] Dhaundiyal A., Tewari P. C. Kinetic Parameters for the Thermal Decomposition of Forest Waste Using Distributed Activation Energy Model (DAEM). Environment and Climate Technologies 2017:19:15-32. doi: 10.1515/rtuect-2017-000210.1515/rtuect-2017-0002
  34. [34] Dhaundiyal A., Gangwar J. Kinetics of the thermal decomposition of pine needles. Acta Uni. Sapientiae, Agriculture and Environment 2015:7:5-22. doi: 10.1515/ausae-2015-000110.1515/ausae-2015-0001
  35. [35] Gai C., Zhang Y., Chen W. T., Zhang P., Dong Y. Thermogravimetric and kinetic analysis of thermal decomposition characteristics of low-lipid microalgae. Bioresour. Technol. 2013:150:139-148. doi: 10.1016/j.biortech.2013.09.13710.1016/j.biortech.2013.09.13724161552
  36. [36] Idris S. S., Rahman N. A., Ismail K. Combustion characteristics of Malaysian oil palm biomass, sub-bituminous coal and their respective blends via thermogravimetric analysis (TGA). Bioresour. Technol. 2012:123:581-591. doi: 10.1016/j.biortech.2012.07.06510.1016/j.biortech.2012.07.06522944493
  37. [37] Sovizi M. R., Hajimirsadeghi S. S., Naderizadeh B. Effect of particle size on thermal decomposition of nitrocellulose. Journal of Hazardous Materials 2009:168:1134-1139. doi: 10.1016/j.jhazmat.2009.02.14610.1016/j.jhazmat.2009.02.146
  38. [38] Vyazovkin S., Wight C. A. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochimica acta 1999:340-341:53-68. doi: 10.1016/S0040-6031(99)00253-110.1016/S0040-6031(99)00253-1
  39. [39] Kumar A., Wang L., Dzenis Y., Jones D., Hanna M. Thermogravimetric characterization of corn stover as gasification and pyrolysis feedstock. Biomass Bioenergy 2008:32:460-467. doi: 10.1016/j.biombioe.2007.11.00410.1016/j.biombioe.2007.11.004
  40. [40] Cai J. M., Liu R. H. Parametric study of the nonisothermal nth-order distributed activation energy model involved the weibull distribution for biomass pyrolysis. Journal of Thermal Analysis and Calorimetry 2007:89:971-975. doi: 10.1007/s10973-006-8266-y10.1007/s10973-006-8266-y
  41. [41] Dhaundiyal A., Singh S. B. Parametric Study of nth Order Distributed Activation Energy Model for Isothermal Pyrolysis of Forest Waste Using Gaussian Distribution. Acta Technologica Agriculturae 2017:20:23-28. doi: 10.1515/ata-2017-000510.1515/ata-2017-0005
  42. [42] Lim A. C. R., Chin B. L. F., Jawad Z. A., Hii K. L. Kinetic analysis of rice husk pyrolysis using Kissinger-Akahira-Sunose (KAS) method. Procedia Engineering 2016:148:1247-1251. doi: 10.1016/j.proeng.2016.06.48610.1016/j.proeng.2016.06.486
DOI: https://doi.org/10.1515/rtuect-2018-0001 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 5 - 21
Published on: Feb 16, 2018
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2018 Alok Dhaundiyal, Suraj B. Singh, Muammel M. Hanon, Rekha Rawat, published by Riga Technical University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.