[1] Raghubanshi A. S., Rai L., Gaur J. P., Shing J. S. Invasive al species and biodiversity in India. Curr. Sci. India. 2005:88(2):539-540.10.1136/bmj.2.3325.539-b
[2] Evans H. C. Parthenium hysterophorus, a review of its weed status and the possibilities for biological control. Biocontrol News and Information 1997:18(3):89N-98N.
[3] Levine J. M., Vila M., D’Antonio C. M., Dukes J. S., Grigulis K., Lavorel S. Mechanisms underlying the impacts of exotic plant invasions. Proc. R. Soc. B 2003:270:775-781. doi: 10.1098/rspb.2003.232710.1098/rspb.2003.2327169131112737654
[4] Belnap J., Phillips S. L. Soil biota in an ungrazed grassland: Response to annual grass (Bromus tectorum) invasion. Ecol. Appl. 2001:11(5):1261-1275. doi: 10.2307/306091810.2307/3060918
[5] Zavaleta E. Valuing ecosystem services lost to Tamarix invasion in the United States. Invasive Species in a Changing World. Washington: Island Press, 2000.
[6] D’Antonio C. M. Mechanisms controlling invasion of costal plant communities by the alien succulent Carpobrotus edulis. Ecology 1993:74(1):83-95. doi: 10.2307/193950310.2307/1939503
[7] Kourtev P. S., Ehrenfeld J. G., Huang W. Z. Effects of exotic plant species on soil properties in hardwood forests of New Jersey. Water, Air, and Soil Pollution 1998:105:493-501. doi: 10.1023/A:100503710549910.1023/A:1005037105499
[8] Dassonville N., Vanderhoeven S., Vanparys V., Hayez M., Gruber W., Meerts P. Impacts of alien invasive plants on soil nutrients are correlated with initial site conditions in NW Europe. Oecologia 2008:157:131-140. doi: 10.1007/s00442-008-1054-610.1007/s00442-008-1054-618491146
[11] Ministry of New Renewable Energy. Biomass power and cogeneration programme, 2012. Available: http://mnre.gov.in/schemes/grid-connected/biomass-powercogen
[12] Dhaundiyal A., Gupta V. K. The analysis of pine needles as a substrate for gasification. J. Water, Energy Environ. 2014:15:73-81. doi: 10.3126/hn.v15i0.1129910.3126/hn.v15i0.11299
[14] White J. E., Catallo W. J., Legendre B. L. Biomass pyrolysis kinetics: A comparative critical review with relevant agricultural residue case studies. Journal of Analytical and Applied Pyrolysis 2011:91(1):1-33. doi: 10.1016/j.jaap.2011.01.00410.1016/j.jaap.2011.01.004
[15] Zhu H. M., Yan J. H., Jiang X. G., Lai Y. E., Cen K. F. Study on pyrolysis of typical medical waste materials by using TG-FTIR analysis. Journal of Hazardous Materials 2008:153:670-676. doi: 10.1016/j.jhazmat.2007.09.01110.1016/j.jhazmat.2007.09.011
[16] Koreoova Z., Juma M., Annus J., Markos J., Jelemensky L. Kinetics of pyrolysis and properties of carbon black from a scrap tire. Chemical Papers 2006:60(6):422-426. doi: 10.2478/s11696-006-0077-x10.2478/s11696-006-0077-x
[17] Quan C., Li A., Gao N. Thermogravimetric analysis and kinetic study on large particles of printed circuit board wastes. Waste Management 2009:29(8):2353-2360. doi: 10.1016/j.wasman.2009.03.02010.1016/j.wasman.2009.03.020
[19] Mason D., Gandhi K. Formulas for calculating the calorific value of coal and coal chars: Development, tests, and uses. Fuel Processing Technology 1983:7(1):11-22. doi: 10.1016/0378-3820(83)90022-X10.1016/0378-3820(83)90022-X
[22] Ravi P., Vargeese A. A., Tewari S. P. Isoconversional kinetic analysis of decomposition of nitropyrazoles. Thermochimica Acta 2012:550:83-89. doi: 10.1016/j.tca.2012.10.00310.1016/j.tca.2012.10.003
[24] Friedman H. L. Kinetics of thermal degradation of char-forming plastics from thermogravimetry Application to phenolic plastic. J. Polym. Sci. 1964:6:183-195. doi: 10.1002/polc.507006012110.1002/polc.5070060121
[26] Flynn J. H., Wall L. A. General treatment of the thermogravimetry of polymers. J. Res. Nat. Bur. Standards 1966:70A(6):487-523. doi: 10.6028/jres.070A.04310.6028/jres.070A.043662470931824016
[32] Bahng M. K., Mukarakate C., Robichaud D. J., Nimlos M. R. Current technologies for analysis of biomass thermochemical processing: a review. Anal. Chim. Acta. 2009:651:117-138. doi: 10.1016/j.aca.2009.08.01610.1016/j.aca.2009.08.01619782803
[33] Dhaundiyal A., Tewari P. C. Kinetic Parameters for the Thermal Decomposition of Forest Waste Using Distributed Activation Energy Model (DAEM). Environment and Climate Technologies 2017:19:15-32. doi: 10.1515/rtuect-2017-000210.1515/rtuect-2017-0002
[34] Dhaundiyal A., Gangwar J. Kinetics of the thermal decomposition of pine needles. Acta Uni. Sapientiae, Agriculture and Environment 2015:7:5-22. doi: 10.1515/ausae-2015-000110.1515/ausae-2015-0001
[35] Gai C., Zhang Y., Chen W. T., Zhang P., Dong Y. Thermogravimetric and kinetic analysis of thermal decomposition characteristics of low-lipid microalgae. Bioresour. Technol. 2013:150:139-148. doi: 10.1016/j.biortech.2013.09.13710.1016/j.biortech.2013.09.13724161552
[36] Idris S. S., Rahman N. A., Ismail K. Combustion characteristics of Malaysian oil palm biomass, sub-bituminous coal and their respective blends via thermogravimetric analysis (TGA). Bioresour. Technol. 2012:123:581-591. doi: 10.1016/j.biortech.2012.07.06510.1016/j.biortech.2012.07.06522944493
[37] Sovizi M. R., Hajimirsadeghi S. S., Naderizadeh B. Effect of particle size on thermal decomposition of nitrocellulose. Journal of Hazardous Materials 2009:168:1134-1139. doi: 10.1016/j.jhazmat.2009.02.14610.1016/j.jhazmat.2009.02.146
[39] Kumar A., Wang L., Dzenis Y., Jones D., Hanna M. Thermogravimetric characterization of corn stover as gasification and pyrolysis feedstock. Biomass Bioenergy 2008:32:460-467. doi: 10.1016/j.biombioe.2007.11.00410.1016/j.biombioe.2007.11.004
[40] Cai J. M., Liu R. H. Parametric study of the nonisothermal nth-order distributed activation energy model involved the weibull distribution for biomass pyrolysis. Journal of Thermal Analysis and Calorimetry 2007:89:971-975. doi: 10.1007/s10973-006-8266-y10.1007/s10973-006-8266-y
[41] Dhaundiyal A., Singh S. B. Parametric Study of nth Order Distributed Activation Energy Model for Isothermal Pyrolysis of Forest Waste Using Gaussian Distribution. Acta Technologica Agriculturae 2017:20:23-28. doi: 10.1515/ata-2017-000510.1515/ata-2017-0005
[42] Lim A. C. R., Chin B. L. F., Jawad Z. A., Hii K. L. Kinetic analysis of rice husk pyrolysis using Kissinger-Akahira-Sunose (KAS) method. Procedia Engineering 2016:148:1247-1251. doi: 10.1016/j.proeng.2016.06.48610.1016/j.proeng.2016.06.486