Have a personal or library account? Click to login
Assessment of Environmental Impacts of Limestone Quarrying Operations in Thailand Cover

Assessment of Environmental Impacts of Limestone Quarrying Operations in Thailand

Open Access
|Nov 2017

References

  1. [1] Kittipongvises S., Polprasert C. GHGs Emissions and Sustainable Solid Waste Management. In Recycling of Solid Waste for Biofuels and Bio-chemicals. Springer: Singapore, 2016:55-85. doi:10.1007/978-981-10-0150-5_3
  2. [2] Olivier J. G. J., Janssens-Maenhout G., Muntean M., Peters J. A. H. W. Trends in global CO2 emissions. 2016 Report. The Hague: PBL Netherlands Environmental Assessment Agency, 2016.
  3. [3] IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva: IPCC, 2014.
  4. [4] EPA. Climate change indicators in the United States: global greenhouse gas emissions. Report [Online]. [Accessed 23.01.2017]. Available: http://www/epa.gov/climatechange/indicators
  5. [5] IPCC. Summary for Policymakers. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2014.
  6. [6] Fischedick M., Roy J., Abdel-Aziz A., Acquaye A., Allwood J. M., Ceron J.-P., Geng Y., Kheshgi H., Lanza A., Perczyk D., Price L., Santalla E., Sheinbaum C., Tanaka K. 2014: Industry. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2014.
  7. [7] Office of Natural Resources and Environmental Policy and Planning. Thailand’s First Biennial Update Report under the United Nations Framework Convention on Climate Change. [Online]. Available: http://unfccc.int/resource/docs/natc/thabur1.pdf
  8. [8] Office of the National Economic and Social Development Board (NESDB). Climate Change. Bangkok: Pomprab, 2015.
  9. [9] Department of Primary Industries and Mines. Status of mineral resources utilization in Thailand in 2013-2014 [Online]. [Accessed 7.02.2017]. Available: http://www1.dpim.go.th/dt/pper/000001437122620.pdf
  10. [10] East Sussex, South Downs and Brighton & Hove. Information Paper 9 Climate Change and Waste and Minerals. [Online]. [Accessed 12.02.2017]. Available: http://www.eastsussex.gov.uk/NR/rdonlyres/1459A461-10CA-48D0-86C2-D3B558BD70AC/0/information_paper_9.pdf
  11. [11] Norgate T., Haque N. Using life cycle assessment to evaluate some environmental impacts of gold production. Journal of Cleaner Production 2012:29-30:53-63. doi:10.1016/j.jclepro.2012.01.042
  12. [12] Liu F., Cai Q., Chen S., Chen S., Zhou W. A comparison of the consumption and carbon emissions for different modes of transportation in open-cut coal mines. International Journal of Mining Science and Technology 2015:25:261-266. doi:10.1016/j.ijmst.2015.02.015
  13. [13] Morrow III W. R., Hasanbeigi A., Sathaye J., Xu T. Assessment of energy efficiency improvement and CO2 emission reduction potentials in India’s cement and iron & steel industries. Journal of Cleaner Production 2014:65:131-141. doi:10.1016/j.jclepro.2013.07.022
  14. [14] Ditsele O. Application of life cycle assessment to estimate environmental impacts of surface coal mining. Master’s thesis, Missouri University of Science and Technology, 2010.
  15. [15] Norgate T., Haque N. Energy and greenhouse gas impacts of mining and mineral processing operations. Journal of Cleaner Production 2010:18(3):266-274. doi:10.1016/j.jclepro.2009.09.020
  16. [16] Peralta S., Sasmito A. P., Kumral M. Reliability effect on energy consumption and greenhouse gas emissions of mining hauling fleet towards sustainable mining. Journal of Sustainable Mining 2016:15(3):85-94. doi:10.1016/j.jsm.2016.08.002
  17. [17] Moran C. J., Lodhia S., Kunz N. C., Huisingh D. Sustainability in mining, minerals and energy: New processes, pathways and human interactions for a cautiously optimistic future. Journal of Cleaner Production 2014:84:1-15. doi:10.1016/j.jclepro.2014.09.016
  18. [18] United Nations. Sustainable Development Goals (SDGs). [Online]. [Accessed 16.10.2017]. Available: http://www.un.org/sustainabledevelopment/sustainable-development-goals/#
  19. [19] Niyomthai S., Wattanawan A. Sustainable mining in Thailand: Paradigm shift in environmental management. Applied Environmental Research 2014:36:55-63. doi:10.14456/aer.2014.13
  20. [20] Parker D. J., McNaughton C. S., Sparks G. A. Life cycle greenhouse gas emissions from uranium mining and milling in Canada. Environmental Science & Technology 2016:50:9746-9753. doi:10.1021/acs.est.5b06072
  21. [21] Baumann H., Tillman A. The Hitch Hiker’s Guide to LCA: An orientation in Life Cycle Assessment Methodology and Application. Lund: Studentlitetteratur, 2004.
  22. [22] Chauhan M. K., Chaudhary V. S., Kumar, S., Samar. Life cycle assessment of sugar industry: A review. Renewable and Sustainable Energy Reviews 2011:3445-3453. doi:10.1016/j.rser.2011.04.033
  23. [23] Luo L., van der Voet E., Huppes G. Life cycle assessment and life cycle costing of bioethanol from sugarcane in Brazil. Renewable and Sustainable Energy Reviews 2009:13:1613-1619. doi:10.1016/j.rser.2008.09.024
  24. [24] Silva D. A. L., Delai I., Montes M. L. D., Ometto A. R. Life cycle assessment of the sugarcane bagasse electricity generation in Brazil. Renewable and Sustainable Energy Reviews 2014:532-547. doi:10.1016/j.rser.2013.12.056
  25. [25] Sumper A., Robledo-Garcia M., Villafafila-Robles R., Bergas-Jane J., Andres-Peiro J. Life-cycle assessment of a photovoltaic system in Catalonia (Spain). Renewable and Sustainable Energy Reviews 2011:15:3888-3896. doi:10.1016/j.rser.2011.07.023
  26. [26] Parisi M. L., Maranghi S., Basosi R. The evolution of the dye sensitized solar cells from Grätzel prototype to up-scaled solar applications: a life cycle assessment approach. Renewable and Sustainable Energy Reviews 2014:39:124-138. doi:10.1016/j.rser.2014.07.079
  27. [27] Ardente F., Beccali M., Cellura M., Brano V. L. Energy performances and life cycle assessment of an Italian wind farm. Renewable and Sustainable Energy Reviews 2008:12:200-217. doi:10.1016/j.rser.2006.05.013
  28. [28] Arvesen A., Hertwich E. G. Assessing the life cycle environmental impacts of wind power: a review of present knowledge and research needs. Renewable and Sustainable Energy Reviews 2012:16:5994-6006. doi:10.1016/j.rser.2012.06.023
  29. [29] Bolin C. A., Smith S. T. Life cycle assessment of pentachlorophenol-treated wooden utility poles with comparisons to steel and concrete utility poles. Renewable and Sustainable Energy Reviews 2011:15:2475-2486. doi:10.1016/j.rser.2011.01.019
  30. [30] Lee K., Tae S., Shin S. Development of a life cycle assessment program for building (SUSB-LCA) in South Korea. Renewable and Sustainable Energy Reviews 2009:13:1994-2002. doi:10.1016/j.rser.2009.01.002
  31. [31] Zhang X., Shen L., Zhang L. Life cycle assessment of the air emissions during building construction process: a case study in Hong Kong. Renewable and Sustainable Energy Reviews 2013:17:160-169. doi:10.1016/j.rser.2012.09.024
  32. [32] Orabi W., Zhu Y., Ozcan-Deniz G. Minimizing Greenhouse Gas Emissions from Construction Activities and Processes. Construction Research Congress. Reston, VA: American Society of Civil Engineers, 2012. doi:10.1061/9780784412329.187
  33. [33] Choate W. T. Energy and Emission Reduction Opportunities for the Cement Industry. Columbia: BCS Incorporated, 2003.10.2172/1218753
  34. [34] Ma F., Sha A., Yang P., Huang Y. The Greenhouse Gas Emission from Portland Cement Concrete Pavement Construction in China. International Journal of Environmental Research & Public Health 2016:13(7):632. doi:10.3390/ijerph13070632
  35. [35] Ferreira H., Leite M. G. P. A life cycle assessment study of iron ore mining. Journal of Cleaner Production 2015:108:1081-1091. doi:10.1016/j.jclepro.2015.05.140
  36. [36] Awuah-Offei K., Adekpedjou A. Application of life cycle assessment in the mining industry. Journal of Life Cycle Assessment 2011:16:82-89.10.1007/s11367-010-0246-6
  37. [37] Blengini G. A., Garbarino E., Solar S., Shields D. J., Hamor T., Vinai R., Agioutantis Z. Life cycle assessment guidelines for the sustainable production and recycling of aggregates: the Sustainable aggregates Resource Management Project (SARMa). Journal of Cleaner Production 2012:27:177-181. doi:10.1016/j.jclepro.2012.01.020
  38. [38] Northey S., Haque H., Mudd G. Using sustainability reporting to assess the environmental footprint of copper mining. Journal of Cleaner Production 2012:40:118-128. doi:10.1016/j.jclepro.2012.09.027
  39. [39] Bruch K. H., Kogler C., Kruger J., Reuter M., Ropenack I. V., Rombach E. Fact statement of an ecological statement of copper production and processing. METALL 1995:49(4):252-7.
  40. [40] Anna M. K. A cradle-to-gate life cycle assessment of primary aluminium production at Norðurál, Master’s thesis, University of Iceland, 2014.
  41. [41] Mudd G. M. Global trends in gold mining: towards quantifying environmental and resource sustainability? Resources Policy 2007:32:42-56. doi:10.1016/j.resourpol.2007.05.002
  42. [42] Shao C., Guan Y., Wan Z., Chu C., Ju M. Performance analysis of CO2 emissions and energy efficiency of metal industries in China. Journal of Environmental Management 2014:134:30-138. doi:10.1016/j.jenvman.2013.12.025
  43. [43] DOE. Mining Industry Energy Bandwidth Study. US Depart of Energy, Industrial Technologies Program, 2007. [Online]. Available: https://www1.eere.energy.gov/manufacturing/resources/mining/pdfs/mining_bandwidth.pdf
  44. [44] Department of Mineral Resources, Ministry of Natural Resources and Environment. Classification and distribution of mineral deposit of Suphanburi, Thailand. Report (Thai version), 2014.
  45. [45] ISO 14040: Environmental Management - Life Cycle Assessment - Principles and Framework. International Organization for Standardization. Geneva: 2006.
  46. [46] ISO 14044: Environmental Management - Life Cycle Assessment - Requirements and Guidelines. International Organization for Standardization. Geneva: 2006.
  47. [47] Lewandowska A., Noskowiak A., Pajchrowski G., Zarebska J. Between full LCA and energy certification methodology - a comparison of six methodological variants of buildings environmental assessment. The International Journal of Life Cycle Assessment 2015:20(1):9-22.10.1007/s11367-014-0805-3
  48. [48] Jolliet O., Margni M., Charles R., Humbert S., Payet J., Rebitzer G., Rosenbaum R. IMPACT 2002+: a new life cycle impact assessment methodology. The International Journal of Life Cycle Assessment 2003a:10:324-330.10.1007/BF02978505
  49. [49] Lelek L., Kulczycka J., Lewandowska A., Zarebska J. Life cycle assessment of energy generation in Poland. The International Journal of Life Cycle Assessment 2015:21(1):1-14. doi:10.1007/s11367-015-0979-3
  50. [50] Jolliet O., Brent A., Goedkoop M., Itsubo N., Mueller-Wenk R., Pena C., Schenk R., Stewart M., Weidema B. LCIA Definition Study of the SETAC-UNEP Life Cycle Initiative. UNEP, 2003. Available: http://www.uneptie.org/pc/sustain/lcinitiative/
  51. [51] World Resources Institute, World Business Council for Sustainable Development. The Greenhouse Gas Protocol. A Corporate Accounting and Reporting Standard. Revised edition, 2001.
  52. [52] Kukfisz B., Maranda A. Application of the life cycle assessment (LCA) method for assessing the impact of mechanically loaded mining blasting materials on the environment. Chemik 2014:68(1):29-38.
  53. [53] Yahaya N. R., Murad M., Morad N., Fizri F. F. A. Environmental impact of electricity consumption in crushing and grinding processes of traditional and urban gold mining by using life cycle assessment (LCA). Iranica Journal of Energy & Environment 2012:3:66-73. doi:10.5829/idosi.ijee.2012.03.05.11
  54. [54] Kittipongvises S. Feasibility of Applying Clean Development Mechanism and GHG Emissions Reductions in the Gold Mining Industry: A Case of Thailand. Environmental and Climate Technologies 2012:15:34-47. doi:10.1515/rtuect-2015-0004
  55. [55] Carras J. N., Day S. J., Saghafi A., Williams D. J. Greenhouse gas emissions from low-temperature oxidation and spontaneous combustion at open-cut coal mines in Australia. International Journal of Coal Geology 2009:78:161-168. doi:10.1016/j.coal.2008.12.001
  56. [56] Sterling D. Identifying opportunities to reduce the consumption of energy across mining and processing plants. Schneider Electric publication 2009:3(2):234-241.
  57. [57] Silva G. A., Kulay L. A. Application of Life Cycle Assessment to the LCA case studies single superphosphate production. International Journal of Life Cycle Assessment 2003:8(4):209-214.10.1007/BF02978473
  58. [58] Wang C., Nadolski S., Mejia O., Drozdiak J., Klein B. Energy and cost comparisons of HPGR based circuits with the SABC circuit installed at the huckleberry mine. 45th Annual Canadian Mineral Processors Operators Conference, Ottaea, Ontario, January 22-24, 2013.
  59. [59] Lopez Pacheco A. Mill mods save money. Canadian Institute of Mining Metallurgy and Petroleum, [Online]. Available: https://www.cim.org/en/Publications-and-Technical-Resources/Publications/CIMMagazine/August-2012/Upfront/Mill-mods-savemoney.aspx?page=1#sthash.jdDaqBA8.dpuf.
  60. [60] Jeswiet J., Szekeres A. Energy Consumption in Mining Comminution. Procedia 2016:48:140-145. doi:10.1016/j.procir.2016.03.250
  61. [61] Buckingham L., Dupont F.-F., Stieger J., Blain B., Brits C. Improving Energy Efficiency in Barrick Grinding Circuits [Online]. [Accessed: 18.10.2017]. Available: https://www.eex.gov.au/sites/g/files/net1896/f/files/2014/06/Improving-Energy-Efficiency-in-Barrick-Grinding-Circuits.pdf.
  62. [62] Schreiber A., Marx J., Zapp P., Hake J.-F., Voßenkaul D., Friedrich B. Environmental Impacts of Rare Earth Mining and Separation Based on Eudialyte: A New European Way. Resources 2016:5(4):32. doi:10.3390/resources5040032
  63. [63] Sjunnesson J. Life Cycle Assessment of Concrete. Master Thesis, Lund University, 2005.
  64. [64] Ercelebi S., Bascetin A. Optimization of shovel-truck system for surface mining. The Journal of the Southern African Institute of Mining and Metallurgy 2009:109:433-439.
  65. [65] Dindarloo S. R., Osanloo M., Frimpong S. A stochastic simulation framework for truck and shovel selection and sizing in open pit mines. Southern African Institute Mining Metallurgy 2015:115:209-219. doi:10.17159/2411-9717/2015/v115n3a6
  66. [66] Kittipongvises S., Chavalparit O., Sutthirat C. Greenhouse gases and energy intensity of granite rock mining operations in Thailand: A case of industrial rock-construction. Environmental and Climate Technologies 2016:18(1):64-75. doi:10.1515/rtuect-2016-0014
  67. [67] Dubsok A., Kittipongvieses S. Estimated greenhouse gases emissions from mobile and stationary sources in the limestone and basalt rock mining in Thailand. American Journal of Environmental Sciences 2016:12(5):334-340. doi:10.3844/ajessp.2016.334.340
  68. [68] DOE, US. Mining industry energy bandwidth study. Washington: US Department of Energy, 2007.
  69. [69] Mudd G. M., Weng Z., Memary R., Northey S. A., Giurco D., Mohr S., Mason L. Future greenhouse gas emissions from copper mining: assessing clean energy scenarios. Cluster research 2012:1.21.
  70. [70] Picard D. Fugitive Emissions from Oil and Natural Gas Activities. Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories 2006:103-127.
DOI: https://doi.org/10.1515/rtuect-2017-0011 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 67 - 83
Published on: Nov 30, 2017
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2017 Suthirat Kittipongvises, published by Riga Technical University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.