[1] Albatayneh A., Alterman D., Page A., Moghtaderi B. The Significance of TemperatureBased Approach Over the Energy Based Approaches in the Buildings. Environmental and Climate Technologies 2017:19:39-50. doi:10.1515/rtuect-2017-0004
[2] Shaviv E., Yezioro A., Capeluto I. G. Thermal mass and night ventilation as passive cooling design strategy. Renewable Energy 2001:24:445-452. doi:10.1016/S0960-1481(01)00027-1
[3] Yang L., Li Y. Cooling load reduction by using thermal mass and night ventilation. Energy and Buildings 2008:40:2052-2058. doi:10.1016/j.enbuild.2008.05.014
[4] Kolokotroni M., Giannitsaris I., Watkins R. The effect of the London urban heat island on building summer cooling demand and night ventilation strategies. Solar Energy 2006:80:383-392. doi:10.1016/j.solener.2005.03.010
[5] Geros V., Santamouris M., Karatasou S., Tsangrassoulis A., Papanikolaou, N.On the cooling potential of night ventilation techniques in the urban environment. Energy and Buildings 2005:37:243-257. doi:10.1016/j.enbuild.2004.06.024
[8] National Institute of Building Sciences: Building envelope design guide - wall systems [Online]. Available: http://www.wbdg.org/design/env_wall.php [Accessed: 10.06.2016]
[9] Kunzel H. M., Holm A., Zirkelbach D., Karagiozis A. N. Simulation of indoor temperature and humidity conditions including hygrothermal interactions with the building envelope. Solar Energy 2005:78:554-561. doi:10.1016/j.solener.2004.03.002
[10] Cheng V., Ng E., Givoni B. Effect of envelope colour and thermal mass on indoor temperatures in hot humid climate. Solar Energy 2005:78:528-534. doi:10.1016/j.solener.2004.05.005
[11] Abdullah A. H., Meng Q., Zhao L., Wang F. Field study on indoor thermal environment in an atrium in tropical climates. Building and Environment 2009:44:431-436. doi:10.1016/j.buildenv.2008.02.011
[12] Hassan A. S., Ramli M. Natural ventilation of indoor air temperature: a case study of the traditional Malay House in Penang. American J. of Engineering and Applied Sciences 2010:3(3):521-528. doi:10.3844/ajeassp.2010.521.528
[13] Han J., Yang W., Zhou J., Zhang G., Zhang Q., Moschandreas D. J. A comparative analysis of urban and rural residential thermal comfort under natural ventilation environment. Energy and Buildings 2009:41:139-145. doi:10.1016/j.enbuild.2008.08.005
[14] Hien W. N., Feriadi H. Thermal comfort for naturally ventilated houses in Indonesia. Energy and Buildings 2004:36:614-626. doi:10.1016/j.enbuild.2004.01.011
[17] Asan H. Numerical computation of time lags and decrement factors for different building materials. Building and Environment 2006:41(5):615-620. doi:10.1016/j.buildenv.2005.02.020
[18] Asan H. Effects of wall's insulation thickness and position on time lag and decrement factor. Energy and Buildings 1998:28(3):299-305. doi:10.1016/S0378-7788(98)00030-9
[19] Balocco C., Grazzini G., Cavalera A. Transient analysis of an external building cladding. Energy and Buildings 2008:40:1275-1276. doi:10.1016/j.enbuild.2007.11.008
[20] Hien W. N., Liping W., Chandra A. N., Pandey A. R., Xiaolin W. Effects of double glazed façade on energy consumption, thermal comfort and condensation for a typical office building in Singapore. Energy and Buildings 2005:37:563-572. doi:10.1016/j.enbuild.2004.08.004
[22] Luo M., et al. Can personal control influence human thermal comfort? A field study in residential buildings in China in winter. Energy and Buildings 2014:72:411-418. doi:10.1016/j.enbuild.2013.12.057
[23] Gregory K., Moghtaderi B., Sugo H., Page A. Effect of thermal mass on the thermal performance of various Australian residential constructions systems. Energy and Buildings 2008:40:459-465. doi:10.1016/j.enbuild.2007.04.001
[24] Guan L. Energy use, indoor temperature and possible adaptation strategies for air-conditioned office buildings in face of global warming. Building and Environment 2012:55:8-9. doi:10.1016/j.buildenv.2011.11.013