Have a personal or library account? Click to login
Modelling of Technological Solutions to 4th Generation DH Systems Cover

Modelling of Technological Solutions to 4th Generation DH Systems

Open Access
|Nov 2017

References

  1. [1] Gadd H., Werner S. Achieving low return temperatures from district heating substations. Applied Energy 2014:136:59-67. doi:10.1016/j.apenergy.2014.09.022
  2. [2] Huang F., Zheng J., Baleynaud J. M., Lu J. Heat recovery potentials and technologies in industrial zones. J. Energy Inst. 2016:In Press. doi:10.1016/j.joei.2016.07.012
  3. [3] Butcher T., Litzke W. Condensing economizers for small coal-fired boilers and furnaces. Project Report, BNL Informal, 1994.10.2172/296650
  4. [4] Comakli K. Economic and environmental comparison of natural gas fired conventional and condensing combi boilers. J. Energy Inst. 2008:81(4):242-246. doi: 10.1179/014426008x371031
  5. [5] Chen Q., Finney K., Li H., Zhang X., Zhou J., Sharifi V., Swithenbank J. Condensing boiler applications in the process industry. Appl. Energy 2012:89(1):30-36. doi:10.1016/j.apenergy.2010.11.020
  6. [6] Terhan M., Comakli K. Design and economic analysis of a flue gas condenser to recover latent heat from exhaust flue gas. Appl. Therm. Eng. 2016:100:1007-1015. doi:10.1016/j.applthermaleng.2015.12.122
  7. [7] Grohn A., Suonmaa V., Auvinen A., Lehtinen K. E. J., Jokiniemi J. Reduction of fine particle emissions from wood combustion with optimized condensing heat exchangers. Environ. Sci. Technol. 2009:43(16):6269-6274. doi:10.1021/es8035225
  8. [8] Jeong K., Kessen M. J., Bilirgen H., Levy E. K. Analytical modeling of water condensation in condensing heat exchanger. Int. J. Heat Mass Transf. 2010:53(11-12):2361-2368. doi:10.1016/j.ijheatmasstransfer.2010.02.004
  9. [9] Street O. S. A Market Assessment for Condensing Boilers in Commercial Heating Applications. Boston: 2001.
  10. [10] TEMA. Standards of the Tubular Exchanger, 8th Edition, 1999.
  11. [11] Energy S. T. The 1 st PRO-TEM Network Conference Sustainable Thermal Energy Management in Process Industry.
  12. [12] Jeong K., Levy E. K. Theoretical prediction of sulfuric acid condensation rates in boiler flue gas. Int. J. Heat Mass Transf. 2012:55(25-26):8010-8019. doi:10.1016/j.ijheatmasstransfer.2012.08.037
  13. [13] Levy E. Recovery of water from boiler flue gas, 2008.
  14. [14] Hazell D. Modeling and Optimization of Condensing Heat Exchangers for Cooling Boiler Flue Gas. ProQuest Dissertations Publishing, 2011.
  15. [15] Hill J. M. Study of low-grade waste heat recovery and energy transportations systems in industrial applications. ProQuest Dissertations Publishing, 2011.
  16. [16] Li J-D., Saraireh M., Thorpe G. Condensation of vapor in the presence of non-condensable gas in condensers. Int. J. Heat Mass Transf. 2011:54(17-18):4078-4089. doi:10.1016/j.ijheatmasstransfer.2011.04.003
  17. [17] Osakabe M. Latent heat recovery from actual flue gas, 2009.
  18. [18] Osakabe M. Latent heat recovery from Oxygen-combustion flue gas, 2000. doi:10.1109/IECEC.2000.870877
  19. [19] Sun X., Kotake S., Suzuki Y., Senoo M. Condensation heat transfer on tubes in actual flue gas. Heat Transfer - Asian Research 2001:30(2):139-151. doi:10.1002/1523-1496(200103)30:2<;139::AID-HTJ5>3.0.CO;2-0
  20. [20] Vigants E., Blumberga D., Veidenbergs I., Vigants G., Rochas C. Experimental research of flue gas condensing unit. Advances in Environment, Biotechnology and Biomedicine 2012:179-189.
  21. [21] Li Y., Klausner J. F., Mei R., Knight J. Direct contact condensation in packed beds. International Journal of Heat and Mass Transfer 2006:49:4751-4761. doi:10.1016/j.ijheatmasstransfer.2006.06.013
  22. [22] Turpin A., Couvert A., Laplanche A., Paillier A. Mass transfer and deodorization efficiency in a countercurrent spray tower for low superficial gas velocities. The Canadian Journal of Chemical Engineering 2009:87(1):53-59. doi:10.1002/cjce.20084
  23. [23] Codolo M. C., Bizzo W. A. Experimental study of the SO2 removal efficiency and volumetric mass transfer coefficients in a pilot-scale multi-nozzle spray tower. International Journal of Heat and Mass Transfer 2013:66:80-89. doi:10.1016/j.ijheatmasstransfer.2013.07.011
  24. [24] Javed K. H., Mahmud T., Purba E. Enhancment of mass transfer in a spray tower using swirling gas flow. Chemical Engineering Research and Design 2006:84(A6):465-477. doi:10.1205/cherd.05119
  25. [25] Boulama K., Galanis N., Orfi J. Heat and mass transfer between gas and liquid streams in direct contact. International Journal of Heat and Mass Transfer 2004:47:3669-3681. doi:10.1016/j.ijheatmasstransfer.2004.04.004
  26. [26] Jeong K., Kessen M. J., Bilirgen H., Levy E. K. Analytical modeling of water condensation in condensing heat exchanger. International Journal of Heat and Mass Transfer 2010:53:2361-2368. doi:10.1016/j.ijheatmasstransfer.2010.02.004
  27. [27] Fair J. R., Bravo J. L. Energy recovery by direct contact gas-liquid heat exchange. Proceedings from the Tenth Annual Industrial Energy Technology Conference, Houston, TX, September 13-15, 1988.
  28. [28] Rusanov A. A. Hand-Book on Dust and Ash Capture. Moscow: Energia, 1975.
  29. [29] Nesterenko A. V. Bases of thermodynamic calculations for ventilating and air conditioning (in Russian). Moscow: Vysshaja Shkola, 1971.
  30. [30] Galustov V. S. The direct - flow spray devices in heat - power engineering (in Russian). Moscow: Energoatomizdat, 1989.
  31. [31] Shilyaev M. I., Khromova E. M. Modelling of heat and mass transfer and absorption-condensation dust and gas cleaning in jet scrubbers. Mass Transfer - Advances in Sustainable Energy and Environment Oriented Numerical Modelling 2013:163-194. doi:10.5772/53094
  32. [32] Rahimi A., Bakhshi A. A simple one-dimensional model for investigation of heat and mass transfer effects on removal efficiency of particulate matters in a venturi scrubber. Iranian Journal of Chemical Engineering 2009:6(4):1-14.
  33. [33] Mizonov V., Yelin N., Yakimychev P. A cell model to describe and optimize heat and mass transfer in contact heat exchangers. Energy and Power Engineering 2011:3:144-149. doi:10.4236/epe.2011.32018
  34. [34] Vigants G., Galindoms G., Veidenbergs I., Vigants E., Blumberga D. Efficiency diagram for district heating system with gas condensing unit. Energy Procedia 2015:72:119-126. doi:10.1016/j.egypro.2015.06.017
DOI: https://doi.org/10.1515/rtuect-2017-0007 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 5 - 23
Published on: Nov 30, 2017
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2017 Edgars Vigants, Toms Prodanuks, Girts Vigants, Ivars Veidenbergs, Dagnija Blumberga, published by Riga Technical University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.