Have a personal or library account? Click to login
Market Opportunities for Cellulose Products From Combined Renewable Resources Cover

Market Opportunities for Cellulose Products From Combined Renewable Resources

Open Access
|Jul 2017

References

  1. [1] Muizniece I., Klavina K., Blumberga D. The Impact of Torrefaction on Coniferous Forest Residue Fuel. Energy Procedia 2016:95:319–23. doi: 10.1016/j.egypro.2016.09.01310.1016/j.egypro.2016.09.013
  2. [2] Zihare L., Blumberga D. Insight into Bioeconomy. Solidago canadensis as a valid resource. In the proceedings of CONECT 2017. International Scientific Conference of Environmental and Climate Technologies, Riga, Latvia, 2017.10.1016/j.egypro.2017.09.074
  3. [3] Zihare L., Blumberga D. Invasive species application in Bioeconomy. Case study Heracleum Sosnowskyi Manden in Latvia. Energy Procedia 2017:113;238–243.10.1016/j.egypro.2017.04.060
  4. [4] NGO Zalas majas. Latvian forest sector in facts 2015 [Online]. Available: http://www.zalasmajas.lv/wp-content/uploads/2016/02/skaitlifakti_LV_web.pdf
  5. [5] Abolina E., Luzadis V. A. Abandoned agricultural land and its potential for short rotation woody crops in Latvia. Land Use Policy 2014:49:435–45. doi: 10.1016/j.landusepol.2015.08.02210.1016/j.landusepol.2015.08.022
  6. [6] Guerriero G., Hausman J. F., Strauss J., Ertan H., Siddiqui K. S. Destructuring plant biomass: Focus on fungal and extremophilic cell wall hydrolases. Plant Sci 2015:234:180–93. doi: 10.1016/j.plantsci.2015.02.01010.1016/j.plantsci.2015.02.010493798825804821
  7. [7] Thakur V. K., Thakur M. K. Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydr Polym 2014:109:102–17. doi: 10.1016/j.carbpol.2014.03.03910.1016/j.carbpol.2014.03.03924815407
  8. [8] Brinchi L., Cotana F., Fortunati E., Kenny J. M. Production of nanocrystalline cellulose from lignocellulosic biomass: Technology and applications. Carbohydr Polym 2013:94:154–69. doi: 10.1016/j.carbpol.2013.01.03310.1016/j.carbpol.2013.01.03323544524
  9. [9] Ummartyotin S., Manuspiya H. A critical review on cellulose: From fundamental to an approach on sensor technology. Renew Sustain Energy Rev 2015:41:402–12. doi: 10.1016/j.rser.2014.08.05010.1016/j.rser.2014.08.050
  10. [10] Siqueira G., Bras J., Dufresne A. Cellulosic Bionanocomposites: A Review of Preparation, Properties and Applications. Polymers (Basel) 2010:2:728–65. doi: 10.3390/polym204072810.3390/polym2040728
  11. [11] Elegir G., Kindl A., Sadocco P., Orlandi M. Development of antimicrobial cellulose packaging through laccase-mediated grafting of phenolic compounds. Enzyme Microb Technol 2008:43:84–92. doi: 10.1016/j.enzmictec.2007.10.00310.1016/j.enzmictec.2007.10.003
  12. [12] Deng Y., Zhao Y., Padilla-Zakour O., Yang G. Polyphenols, antioxidant and antimicrobial activities of leaf and bark extracts of Solidago canadensis L. Ind Crops Prod 2015:74:803–9. doi: 10.1016/j.indcrop.2015.06.01410.1016/j.indcrop.2015.06.014
  13. [13] Radusiene J., Marska M., Ivanauskas L., Jakstas V., Karpaviciene B. Assessment of phenolic compound accumulation in two widespread goldenrods. Ind Crops Prod 2015:63:158–66. doi: 10.1016/j.indcrop.2014.10.01510.1016/j.indcrop.2014.10.015
  14. [14] Kamoga O. L. M, Byaruhanga J. K., Kirabira J. B. A review on pulp manufacture from non wood plant materials. Int. J. Chem. Eng. Appl. 2013:4:144–8. doi: 10.7763/IJCEA.2013.V4.28110.7763/IJCEA.2013.V4.281
  15. [15] Ferraz A., Guerra A., Mendonça R., Masarin F., Vicentim M. P., Aguiar A., et al. Technological advances and mechanistic basis for fungal biopulping. Enzyme Microb Technol 2008:43:178–85. doi: 10.1016/j.enzmictec.2007.10.00210.1016/j.enzmictec.2007.10.002
  16. [16] Yaghoubi K., Pazouki M., Shojaosadati S. A. Variable optimization for biopulping of agricultural residues by Ceriporiopsis subvermispora. Bioresour Technol 2008:99:4321–8. doi: 10.1016/j.biortech.2007.08.04310.1016/j.biortech.2007.08.04317935977
  17. [17] Fonseca M. I., Farina J. I., Castrillo M. L., Rodriguez M. D., Nunez C. E., Villalba L. L., et al. Biopulping of wood chips with Phlebia brevispora BAFC 633 reduces lignin content and improves pulp quality. Int Biodeterior Biodegrad 2014:90:29–35. doi: 10.1016/j.ibiod.2013.11.01810.1016/j.ibiod.2013.11.018
  18. [18] Muska A. Uznemejdarbibas planosana. Riga: 2005.
  19. [19] Decuseara N. R. Using The General Electric / Mckinsey Matrix In The Process Of Selecting The Central And East European Markets. Manag Strateg J 2013:19:59–66.
  20. [20] Amatulli C., Caputo T., Guido G. Strategic Analysis through the General Electric/McKinsey Matrix: An Application to the Italian Fashion Industry. Int. J. Bus. Manag. 2011:6:61–75. doi: 10.5539/ijbm.v6n5p6110.5539/ijbm.v6n5p61
  21. [21] Shen L., Zhou J., Skitmore M., Xia B. Application of a hybrid Entropy-McKinsey Matrix method in evaluating sustainable urbanization: A China case study. Cities 2015:42:186–94. doi: 10.1016/j.cities.2014.06.00610.1016/j.cities.2014.06.006
DOI: https://doi.org/10.1515/rtuect-2017-0003 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 33 - 38
Published on: Jul 14, 2017
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2017 Lauma Zihare, Dagnija Blumberga, published by Riga Technical University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.