[2] Zihare L., Blumberga D. Insight into Bioeconomy. Solidago canadensis as a valid resource. In the proceedings of CONECT 2017. International Scientific Conference of Environmental and Climate Technologies, Riga, Latvia, 2017.10.1016/j.egypro.2017.09.074
[3] Zihare L., Blumberga D. Invasive species application in Bioeconomy. Case study Heracleum Sosnowskyi Manden in Latvia. Energy Procedia 2017:113;238–243.10.1016/j.egypro.2017.04.060
[8] Brinchi L., Cotana F., Fortunati E., Kenny J. M. Production of nanocrystalline cellulose from lignocellulosic biomass: Technology and applications. Carbohydr Polym 2013:94:154–69. doi: 10.1016/j.carbpol.2013.01.03310.1016/j.carbpol.2013.01.03323544524
[9] Ummartyotin S., Manuspiya H. A critical review on cellulose: From fundamental to an approach on sensor technology. Renew Sustain Energy Rev 2015:41:402–12. doi: 10.1016/j.rser.2014.08.05010.1016/j.rser.2014.08.050
[10] Siqueira G., Bras J., Dufresne A. Cellulosic Bionanocomposites: A Review of Preparation, Properties and Applications. Polymers (Basel) 2010:2:728–65. doi: 10.3390/polym204072810.3390/polym2040728
[11] Elegir G., Kindl A., Sadocco P., Orlandi M. Development of antimicrobial cellulose packaging through laccase-mediated grafting of phenolic compounds. Enzyme Microb Technol 2008:43:84–92. doi: 10.1016/j.enzmictec.2007.10.00310.1016/j.enzmictec.2007.10.003
[12] Deng Y., Zhao Y., Padilla-Zakour O., Yang G. Polyphenols, antioxidant and antimicrobial activities of leaf and bark extracts of Solidago canadensis L. Ind Crops Prod 2015:74:803–9. doi: 10.1016/j.indcrop.2015.06.01410.1016/j.indcrop.2015.06.014
[13] Radusiene J., Marska M., Ivanauskas L., Jakstas V., Karpaviciene B. Assessment of phenolic compound accumulation in two widespread goldenrods. Ind Crops Prod 2015:63:158–66. doi: 10.1016/j.indcrop.2014.10.01510.1016/j.indcrop.2014.10.015
[14] Kamoga O. L. M, Byaruhanga J. K., Kirabira J. B. A review on pulp manufacture from non wood plant materials. Int. J. Chem. Eng. Appl. 2013:4:144–8. doi: 10.7763/IJCEA.2013.V4.28110.7763/IJCEA.2013.V4.281
[15] Ferraz A., Guerra A., Mendonça R., Masarin F., Vicentim M. P., Aguiar A., et al. Technological advances and mechanistic basis for fungal biopulping. Enzyme Microb Technol 2008:43:178–85. doi: 10.1016/j.enzmictec.2007.10.00210.1016/j.enzmictec.2007.10.002
[16] Yaghoubi K., Pazouki M., Shojaosadati S. A. Variable optimization for biopulping of agricultural residues by Ceriporiopsis subvermispora. Bioresour Technol 2008:99:4321–8. doi: 10.1016/j.biortech.2007.08.04310.1016/j.biortech.2007.08.04317935977
[17] Fonseca M. I., Farina J. I., Castrillo M. L., Rodriguez M. D., Nunez C. E., Villalba L. L., et al. Biopulping of wood chips with Phlebia brevispora BAFC 633 reduces lignin content and improves pulp quality. Int Biodeterior Biodegrad 2014:90:29–35. doi: 10.1016/j.ibiod.2013.11.01810.1016/j.ibiod.2013.11.018
[19] Decuseara N. R. Using The General Electric / Mckinsey Matrix In The Process Of Selecting The Central And East European Markets. Manag Strateg J 2013:19:59–66.
[20] Amatulli C., Caputo T., Guido G. Strategic Analysis through the General Electric/McKinsey Matrix: An Application to the Italian Fashion Industry. Int. J. Bus. Manag. 2011:6:61–75. doi: 10.5539/ijbm.v6n5p6110.5539/ijbm.v6n5p61
[21] Shen L., Zhou J., Skitmore M., Xia B. Application of a hybrid Entropy-McKinsey Matrix method in evaluating sustainable urbanization: A China case study. Cities 2015:42:186–94. doi: 10.1016/j.cities.2014.06.00610.1016/j.cities.2014.06.006