Have a personal or library account? Click to login
Kinetic Parameters for the Thermal Decomposition of Forest Waste Using Distributed Activation Energy Model (DAEM) Cover

Kinetic Parameters for the Thermal Decomposition of Forest Waste Using Distributed Activation Energy Model (DAEM)

Open Access
|Jul 2017

References

  1. [1] Dhaundiyal A., Gupta V.K. The analysis of pine needles as a substrate for gasification. Journal of Water, Energy and Environment, Hydro Nepal 2014;15:73–81. doi: /10.3126/hn.v15i0.1129910.3126/hn.v15i0.11299
  2. [2] Burnham A.K, Braun R.L. Global kinetic analysis of complex materials. Energy Fuels 1999;13:1–22. doi: 10.1021/ef980076510.1021/ef9800765
  3. [3] Burnham A. K., Schmidt B. J., Braun R. L. A test of parallel reaction model using kinetic measurements on hydrous pyrolysis residues. Geochem 1995;23:931–939. doi: 10.1016/0146-6380(95)00069-010.1016/0146-6380(95)00069-0
  4. [4] Galgano A., Blasi C.D. Modeling wood degradation by the unreacted-core-shrinking approximation. Ind. Eng. Chem. Res, 2003;42:2101–2111.doi: 10.1021/ie020939o10.1021/ie020939o
  5. [5] Ferdous D, Dalai A.K, Bej S.K. Thring R.W. Pyrolysis of lignins: experimental and kinetics studies. Energy Fuels,2002;16:1405–1412. doi: 10.1021/ef020032310.1021/ef0200323
  6. [6] Khawam A., Flanagan D.R. Solid-state kinetic models: basics and mathematical fundamentals. Journal of Physical Chemistry B 2006;110:17315–1732. doi: 10.1021/jp062746a10.1021/jp062746a
  7. [7] Vyazovkin S., Wight C. A. Model-free and model –fitting approaches to kinetic analysis of isothermal and non isothermal data. Thermochimica Acta. 1999;53:340–341. doi: 10.1016/S0040-6031(99)00253-110.1016/S0040-6031(99)00253-1
  8. [8] Nowicki L., Stolarek P., Olewski T., BedykT., Ledakowicz S. Mechanism and kinetics of sewage sludge pyrolysis by thermogravimetry and mass spectrometry analysis. Chemical and Process Engineering,2008;29:813–825.
  9. [9] Mangut V., Sabio E., Ganan J., Gonzalez J. F., Ramiro A., Gonzalez C. M., Roman S., and A. Al-Kassir. Thermogravimetric study of the pyrolysis of biomass residues from tomato processing industry. Journal of Fuel Processing Technology 2006;87:109–115. doi: 10.1016/j.fuproc.2005.08.00610.1016/j.fuproc.2005.08.006
  10. [10] Gunes M., Gunes S. A direct search method for determination of DAEM kinetic parameters from nonisothermal TGA data. Applied Mathematics and Computation2002;130:619. doi: 10.1016/S0096-3003(01)00124-210.1016/S0096-3003(01)00124-2
  11. [11] Sonobe T., Worasuwannarak N. Kinetic analyses of biomass pyrolysis using the distributed activation energy model. Fuel 2008;87(3):414-421. doi: 10.1016/j.fuel.2007.05.00410.1016/j.fuel.2007.05.004
  12. [12] Li Z., Liu C., Chen Z., Qian J., Zhao W., Zhu Q. Analysis of coals and biomass pyrolysis using the distributed activation energy model. Bioresource Technology2009;100:948–952. doi: 10.1016/j.biortech.2008.07.03210.1016/j.biortech.2008.07.032
  13. [13] Yan J. H., Zhu H. M., Jiang X. G., Chi Y., Cen K. F. Analysis of volatile species kinetics during typical medical waste materials pyrolysis using a distributed activation energy model. Journal of Hazardous Materials 2009;1;162–646. doi: 10.1016/j.jhazmat.2008.05.07710.1016/j.jhazmat.2008.05.077
  14. [14] Vand V. A theory of the irreversible electrical resistance changes of metallic films evaporated in vacuum. London: Proc. Phys. Soc., 1943.10.1088/0959-5309/55/3/308
  15. [15] Pitt G. J. The kinetics of the evolution of volatile products from coal. Fuel 1962;41:267.doi: 10.1021/ef00002a00210.1021/ef00002a002
  16. [16] Hanbaba P., van Heek K.H., Jüntgen H., Peters W. Non-isothermal kinetics of coal pyrolyse, Part II: extension of the theory of the evolution of gas and experimental confirmation of bituminous coal. Fuel Chemistry 1968;49:368–376.
  17. [17] Anthony D.B., Howard J.B. Coal Devolatilization and Hydrogasification. AIChE J. 1976;22:625–656. doi: 10.1002/aic.69022040310.1002/aic.690220403
  18. [18] Anthony D.B., Howard J.B., Hottel H.C., Meissner H.P. Devolatilization and Hydrogasification of Bituminous Coal. Fuel 1976;55:121–128. doi: 10.1016/0016-2361(76)90008-910.1016/0016-2361(76)90008-9
  19. [19] Niksa S., Lau C. W. Global Rates of Devolatilization of Various Coal Types. Combust. Flame 1993;94:293. doi: 10.1016/0010-2180(93)90075-E10.1016/0010-2180(93)90075-E
  20. [20] Miura K. A new and simple method to estimate f(E) and k0(E) in the distributed activation energy model from three sets of experimental data. Energy & Fuels1995;9:302–7. doi: 10.1021/ef970212q10.1021/ef970212q
  21. [21] Armstrong R., Kulesza B.L.J. An approximate solution to the equation x = exp(−x/ε)”. Bull. Institute of Mathematics and its Applications, 1981;17:56.
  22. [22] Varhegyi G., Szabo P., Antal M. J. Jr. Kinetics of charcoal devolatilization. Energy Fuels2012;16:724–731. doi: 10.1021/ef010227v10.1021/ef010227v
  23. [23] Suuberg E. M. Approximate solution technique for nonisothermal, Gaussian distributed activation energy models. Combustion and Flame 1983;50:243–245. doi: 10.1016/0010-2180(83)90066-410.1016/0010-2180(83)90066-4
  24. [24] Howard J.B. In Chemistry of Coal Utilization. (M.A.Elliott, Ed) Wiley & Sons, 1981.
  25. [25] Bilbao R., Mastral J. F., Aldea M. E. Kinetic study for the thermal decomposition of cellulose and pine sawdust in an air atmosphere. J. Anal. Appl. Pyrol.3 1997;9:53–64. doi: 10.1016/S0165-2370(96)00957-610.1016/S0165-2370(96)00957-6
  26. [26] Sonobe T., Worasuwannarak N. Kinetic analyses of biomass pyrolysis using the distributed activation energy model. Fuel 2008;87(3):414–421. doi: 10.1016/j.fuel.2007.05.00410.1016/j.fuel.2007.05.004
  27. [27] Muller-Hagedorn M., Bockhorn H., Krebs L., Muller U. A comparative kinetic study on the pyrolysis of three different wood species. Journal of Analytical and Applied Pyrolysis 2003;68–69:231–249. doi: 10.1016/S0165-370(03)00065-2
  28. [28] Kastanaki E., Vamvuka D., Grammelis P., Kakaras E. Thermogravimetric studies of the behavior of lignite-biomass blends during devolatilization. Fuel Processing Technology2002:77–78:159–66. doi: 10.1016/S0378-3820(02)00049-810.1016/S0378-3820(02)00049-8
  29. [29] Gronli M. G., Varhegyi G., Di Blasi C. Thermogravimetric analysis and devolatilization kinetics of wood. Industrial & Engineering Chemistry Research2002;41:4201–4208. doi: 10.1021/ie020115710.1021/ie0201157
DOI: https://doi.org/10.1515/rtuect-2017-0002 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 15 - 32
Published on: Jul 14, 2017
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2017 Alok Dhaundiyal, Pramod Tewari, published by Riga Technical University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.