[1] Dhaundiyal A., Gupta V.K. The analysis of pine needles as a substrate for gasification. Journal of Water, Energy and Environment, Hydro Nepal 2014;15:73–81. doi: /10.3126/hn.v15i0.1129910.3126/hn.v15i0.11299
[3] Burnham A. K., Schmidt B. J., Braun R. L. A test of parallel reaction model using kinetic measurements on hydrous pyrolysis residues. Geochem 1995;23:931–939. doi: 10.1016/0146-6380(95)00069-010.1016/0146-6380(95)00069-0
[6] Khawam A., Flanagan D.R. Solid-state kinetic models: basics and mathematical fundamentals. Journal of Physical Chemistry B 2006;110:17315–1732. doi: 10.1021/jp062746a10.1021/jp062746a
[8] Nowicki L., Stolarek P., Olewski T., BedykT., Ledakowicz S. Mechanism and kinetics of sewage sludge pyrolysis by thermogravimetry and mass spectrometry analysis. Chemical and Process Engineering,2008;29:813–825.
[9] Mangut V., Sabio E., Ganan J., Gonzalez J. F., Ramiro A., Gonzalez C. M., Roman S., and A. Al-Kassir. Thermogravimetric study of the pyrolysis of biomass residues from tomato processing industry. Journal of Fuel Processing Technology 2006;87:109–115. doi: 10.1016/j.fuproc.2005.08.00610.1016/j.fuproc.2005.08.006
[10] Gunes M., Gunes S. A direct search method for determination of DAEM kinetic parameters from nonisothermal TGA data. Applied Mathematics and Computation2002;130:619. doi: 10.1016/S0096-3003(01)00124-210.1016/S0096-3003(01)00124-2
[12] Li Z., Liu C., Chen Z., Qian J., Zhao W., Zhu Q. Analysis of coals and biomass pyrolysis using the distributed activation energy model. Bioresource Technology2009;100:948–952. doi: 10.1016/j.biortech.2008.07.03210.1016/j.biortech.2008.07.032
[13] Yan J. H., Zhu H. M., Jiang X. G., Chi Y., Cen K. F. Analysis of volatile species kinetics during typical medical waste materials pyrolysis using a distributed activation energy model. Journal of Hazardous Materials 2009;1;162–646. doi: 10.1016/j.jhazmat.2008.05.07710.1016/j.jhazmat.2008.05.077
[14] Vand V. A theory of the irreversible electrical resistance changes of metallic films evaporated in vacuum. London: Proc. Phys. Soc., 1943.10.1088/0959-5309/55/3/308
[16] Hanbaba P., van Heek K.H., Jüntgen H., Peters W. Non-isothermal kinetics of coal pyrolyse, Part II: extension of the theory of the evolution of gas and experimental confirmation of bituminous coal. Fuel Chemistry 1968;49:368–376.
[20] Miura K. A new and simple method to estimate f(E) and k0(E) in the distributed activation energy model from three sets of experimental data. Energy & Fuels1995;9:302–7. doi: 10.1021/ef970212q10.1021/ef970212q
[21] Armstrong R., Kulesza B.L.J. An approximate solution to the equation x = exp(−x/ε)”. Bull. Institute of Mathematics and its Applications, 1981;17:56.
[22] Varhegyi G., Szabo P., Antal M. J. Jr. Kinetics of charcoal devolatilization. Energy Fuels2012;16:724–731. doi: 10.1021/ef010227v10.1021/ef010227v
[25] Bilbao R., Mastral J. F., Aldea M. E. Kinetic study for the thermal decomposition of cellulose and pine sawdust in an air atmosphere. J. Anal. Appl. Pyrol.3 1997;9:53–64. doi: 10.1016/S0165-2370(96)00957-610.1016/S0165-2370(96)00957-6
[27] Muller-Hagedorn M., Bockhorn H., Krebs L., Muller U. A comparative kinetic study on the pyrolysis of three different wood species. Journal of Analytical and Applied Pyrolysis 2003;68–69:231–249. doi: 10.1016/S0165-370(03)00065-2
[28] Kastanaki E., Vamvuka D., Grammelis P., Kakaras E. Thermogravimetric studies of the behavior of lignite-biomass blends during devolatilization. Fuel Processing Technology2002:77–78:159–66. doi: 10.1016/S0378-3820(02)00049-810.1016/S0378-3820(02)00049-8
[29] Gronli M. G., Varhegyi G., Di Blasi C. Thermogravimetric analysis and devolatilization kinetics of wood. Industrial & Engineering Chemistry Research2002;41:4201–4208. doi: 10.1021/ie020115710.1021/ie0201157