Have a personal or library account? Click to login
Greenhouse Gases and Energy Intensity of Granite Rock Mining Operations in Thailand: A Case of Industrial Rock-Construction Cover

Greenhouse Gases and Energy Intensity of Granite Rock Mining Operations in Thailand: A Case of Industrial Rock-Construction

Open Access
|Jan 2017

References

  1. [1] Thailand’s economic condition in 2010. Bank of Thailand, 2010.
  2. [2] The Office of SMEs Promotion. SMEs white paper.
  3. [3] Department of Primary Industries and Mines. Status of mineral resources utilization in Thailand in 2013–2014 [Online]. Available: http://www.dpim.go.th/articles?catid=127
  4. [4] Department of Primary Industries and Mines. Mineral Statistics of Thailand (Fiscal Year) 2014–2015 [Online]. Available: http://www1.dpim.go.th/dt/pper/000001437122620.pdf
  5. [5] TGO. GHG emission by sector in CO2 equivalent (Million tons) and percent for 2000 [Online]. Available: http://www.tgo.or.th/english/index.php?option=com_content&view=article&id=45&Itemid=71
  6. [6] East Sussex, South Downs and Brighton & Hove. Information Paper 9 Climate Change and Waste and Minerals [Online]. Available: http://www.eastsussex.gov.uk/NR/rdonlyres/1459A461-10CA-48D0-86C2-D3B558BD70AC/0/information_paper_9.pdf
  7. [7] Norgate T., Haque N. Using life cycle assessment to evaluate some environmental impacts of gold production. Journal of Cleaner Production 2012:29–30:53–63. doi:10.1016/j.jclepro.2012.01.04210.1016/j.jclepro.2012.01.042
  8. [8] Liu F., Cai Q., Chen S., Chen S., Zhou W. A comparison of the consumption and carbon emissions for different modes of transportation in open-cut coal mines. International Journal of Mining Science and Technology 2015:25:261–266. doi:10.1016/j.ijmst.2015.02.01510.1016/j.ijmst.2015.02.015
  9. [9] Morrow III W. R., Hasanbeigi A., Sathaye J., Xu T. Assessment of energy efficiency improvement and CO2 emission reduction potentials in India’s cement and iron & steel industries. Journal of Cleaner Production 2014:65:131–141. doi:10.1016/j.jclepro.2013.07.02210.1016/j.jclepro.2013.07.022
  10. [10] Haque N., Norgate T. The greenhouse gas footprint of in-situ leaching of uranium, gold and copper in Australia. Journal of Cleaner Production 2014:84:382–390. doi:10.1016/j.jclepro.2013.09.03310.1016/j.jclepro.2013.09.033
  11. [11] Mudd G. M., Diesendorf M. Sustainability of uranium mining and milling: toward quantifying resources and eco-efficiency. Environmental Science and Technology 2008:42:2624–2630. doi:10.1021/es702249v10.1021/es702249v18505007
  12. [12] Gao T., Lui Q., Wang J. A comparative study of carbon footprint and assessment standards. International Journal of Low-Carbon Technologies 2013:9(3):237–243. doi: 10.1093/ijlct/ctt04110.1093/ijlct/ctt041
  13. [13] Parker D. J., McNaughton C. S., Sparks G. A. Life cycle greenhouse gas emissions from uranium mining and milling in Canada. Environmental Science & Technology 2016:50:9746–9753. doi:10.1021/acs.est.5b0607210.1021/acs.est.5b0607227471915
  14. [14] Turconi R., Boldrin A., Astrup T. F. Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations. Renewable and Sustainable Energy Review 2013:28:555–65. doi:10.1016/j.rser.2013.08.01310.1016/j.rser.2013.08.013
  15. [15] Stockholm Environment Institute. Issues and Options for Benchmarking Industrial GHG Emissions. SEI White Paper, 2010.
  16. [16] Zogla L., Zogla G., Beloborodko A., Rosa M. Process benchmark for evaluation energy performance in breweries. Energy Procedia 2015:72:202–208. doi:10.1016/j.egypro.2015.06.02910.1016/j.egypro.2015.06.029
  17. [17] Department of Mineral Resource. Geology of Thailand. Available: http://www.dmr.go.th/main.php?filename=GeoThai_En
  18. [18] EPA’s Greenhouse Gas Emission Reductions. Available: https://www.epa.gov/climatechange/reducing-greenhouse-gas-emissions
  19. [19] EPA. Quantifying Greenhouse Gas Emissions from Key Industrial Sectors in the United States: Working Draft, 2008.
  20. [20] Department of Primary Industries and Mines, Ministry of Industry and Faculty of Engineering, Chiang Mai University, Thailand. An evaluation of CDM project development in the mining industry: Final report, 2010.
  21. [21] TGO. Carbon Footprint for Organization: Emission factor [Online]. Available: http://thaicarbonlabel.tgo.or.th/download/Emission_Factor_CFO.pdf, Jan, 2014
  22. [22] TGO. Carbon Footprint of Products: Emission factor [Online]. Available: http://thaicarbonlabel.tgo.or.th/download/Emission_Factor_CFP.pdf
  23. [23] Mining Association of Canada. Inventorying, Measuring and Reporting on Climate Change Actions. Report, Pembina Institute and Stratos Inc, 2000.
  24. [24] Weiland C. D., Muench S. T. Life cycle assessment of Portland cement concrete interstate highway rehabilitation and replacement, Report WA-RD744.4. Olympia, WA: Washington State Department of Transportation, Olympia, 2008.
  25. [25] Stripple H. Life Cycle Assessment of Road: A Pilot Study for Inventory Analysis. Stockholm: IVL Swedish Environmental Research Institute, 2001.
  26. [26] Mineral Products Association. Carbon Management. Available: http://www.mineralproducts.org/sustainability/carbon-management.html
  27. [27] Mitchbell C. J. Aggregate carbon demand: the hunt for low carbon aggregate. Presented at 16th extractive industry geology conference, Portsmouth, England, 2012.
  28. [28] Cresswell D. Quantificated report on energy consumption due to inefficient energy use. EE-Quarry Project, 2011.
  29. [29] Yahaya N. R., Murad M., Morad N., Fizri F. F. A. Environmental impact of electricity consumption in crushing and grinding processes of traditional and urban gold mining by using life cycle assessment (LCA). Iranica Journal of Energy & Environment 2012:3:66–73. doi:10.5829/idosi.ijee.2012.03.05.1110.5829/idosi.ijee.2012.03.05.11
  30. [30] Boyan R., Peter S. Preliminary GHG Emission Inventory. Sofia: DPM Krumovgrad, 2014.
  31. [31] Kittipongvises S. Feasibility of Applying Clean Development Mechanism and GHG Emissions Reductions in the Gold Mining Industry: A Case of Thailand. Environmental and Climate Technologies 2012:15:34–47. doi:10.1515/rtuect-2015-000410.1515/rtuect-2015-0004
  32. [32] Valery W. Improving the resource and eco-efficiency of mining operations. Metso Process Technology & Innovation, 2014.
  33. [33] Limsiri C. Optimization of loader-hauler fleet selection. European Journal of Scientific Research 2011:56:266–271.
  34. [34] Ercelebi S., Bascetin A. Optimization of shovel-truck system for surface mining. The Journal of the Southern African Institute of Mining and Metallurgy 2009:109:433–439.
  35. [35] Leslie D. R. Diesel emissions evaluation for the surface mining industry. Available: http://www.smartmines.com/diesel/DiesEm.htm
  36. [36] Adey E., Wall F., Shail R., Kreech J., Neal W, Limprasert R., Roba C., Delmore C. Best practice for reducing the carbon footprint of the mining industry, 2011.
  37. [37] Kalnins S.N., Blumberga D., Gusca J. Combined methodology to evaluate transition to low carbon society. Energy Procedia 2015:72:11–18. doi:10.1016/j.egypro.2015.06.00310.1016/j.egypro.2015.06.003
  38. [38] Barisa A., Rosa M., Laicane I., Sarmins R. Application of low-carbon technologies for cutting household GHG emissions. Energy Procedia 2015:72:230–237. doi:10.1016/j.egypro.2015.06.03310.1016/j.egypro.2015.06.033
  39. [39] Cimdina G., Timma L., Veidenbergs I., Blumberga D. Methodologies used for scaling-up from a single energy production unit to state energy sector. Environmental and Climate Technologies 2015:15:5–21. doi:10.1515/rtuect-2015-000210.1515/rtuect-2015-0002
DOI: https://doi.org/10.1515/rtuect-2016-0014 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 64 - 75
Published on: Jan 27, 2017
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2017 Suthirat Kittipongvises, Orathai Chavalparit, Chakkaphan Sutthirat, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.