[3] Department of Primary Industries and Mines. Status of mineral resources utilization in Thailand in 2013–2014 [Online]. Available: http://www.dpim.go.th/articles?catid=127
[8] Liu F., Cai Q., Chen S., Chen S., Zhou W. A comparison of the consumption and carbon emissions for different modes of transportation in open-cut coal mines. International Journal of Mining Science and Technology 2015:25:261–266. doi:10.1016/j.ijmst.2015.02.01510.1016/j.ijmst.2015.02.015
[9] Morrow III W. R., Hasanbeigi A., Sathaye J., Xu T. Assessment of energy efficiency improvement and CO2 emission reduction potentials in India’s cement and iron & steel industries. Journal of Cleaner Production 2014:65:131–141. doi:10.1016/j.jclepro.2013.07.02210.1016/j.jclepro.2013.07.022
[11] Mudd G. M., Diesendorf M. Sustainability of uranium mining and milling: toward quantifying resources and eco-efficiency. Environmental Science and Technology 2008:42:2624–2630. doi:10.1021/es702249v10.1021/es702249v18505007
[12] Gao T., Lui Q., Wang J. A comparative study of carbon footprint and assessment standards. International Journal of Low-Carbon Technologies 2013:9(3):237–243. doi: 10.1093/ijlct/ctt04110.1093/ijlct/ctt041
[13] Parker D. J., McNaughton C. S., Sparks G. A. Life cycle greenhouse gas emissions from uranium mining and milling in Canada. Environmental Science & Technology 2016:50:9746–9753. doi:10.1021/acs.est.5b0607210.1021/acs.est.5b0607227471915
[14] Turconi R., Boldrin A., Astrup T. F. Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations. Renewable and Sustainable Energy Review 2013:28:555–65. doi:10.1016/j.rser.2013.08.01310.1016/j.rser.2013.08.013
[20] Department of Primary Industries and Mines, Ministry of Industry and Faculty of Engineering, Chiang Mai University, Thailand. An evaluation of CDM project development in the mining industry: Final report, 2010.
[24] Weiland C. D., Muench S. T. Life cycle assessment of Portland cement concrete interstate highway rehabilitation and replacement, Report WA-RD744.4. Olympia, WA: Washington State Department of Transportation, Olympia, 2008.
[27] Mitchbell C. J. Aggregate carbon demand: the hunt for low carbon aggregate. Presented at 16th extractive industry geology conference, Portsmouth, England, 2012.
[29] Yahaya N. R., Murad M., Morad N., Fizri F. F. A. Environmental impact of electricity consumption in crushing and grinding processes of traditional and urban gold mining by using life cycle assessment (LCA). Iranica Journal of Energy & Environment 2012:3:66–73. doi:10.5829/idosi.ijee.2012.03.05.1110.5829/idosi.ijee.2012.03.05.11
[31] Kittipongvises S. Feasibility of Applying Clean Development Mechanism and GHG Emissions Reductions in the Gold Mining Industry: A Case of Thailand. Environmental and Climate Technologies 2012:15:34–47. doi:10.1515/rtuect-2015-000410.1515/rtuect-2015-0004
[34] Ercelebi S., Bascetin A. Optimization of shovel-truck system for surface mining. The Journal of the Southern African Institute of Mining and Metallurgy 2009:109:433–439.
[36] Adey E., Wall F., Shail R., Kreech J., Neal W, Limprasert R., Roba C., Delmore C. Best practice for reducing the carbon footprint of the mining industry, 2011.
[39] Cimdina G., Timma L., Veidenbergs I., Blumberga D. Methodologies used for scaling-up from a single energy production unit to state energy sector. Environmental and Climate Technologies 2015:15:5–21. doi:10.1515/rtuect-2015-000210.1515/rtuect-2015-0002