Have a personal or library account? Click to login
Thermogravimetric and Kinetic Analysis of Melon (Citrullus colocynthis L.) Seed Husk Using the Distributed Activation Energy Model Cover

Thermogravimetric and Kinetic Analysis of Melon (Citrullus colocynthis L.) Seed Husk Using the Distributed Activation Energy Model

Open Access
|Feb 2016

References

  1. [1] Sanderson K. Lignocellulose: A chewy problem. Nature 2011:474:S12-S14. doi:10.1038/474S012a10.1038/474S012a21697834
  2. [2] Straathof A. J. Transformation of biomass into commodity chemicals using enzymes or cells. Chemical Reviews 2014:114(3):1871-908. doi:10.1021/cr400309c10.1021/cr400309c23987659
  3. [3] FAO, Melon Seed Statistics: Nigeria. FAOSTAT Statistics 2008-2013. 2015.
  4. [4] Giwa S. O., Chuah L. A., Adam N. M. Fuel properties and rheological behavior of biodiesel from egusi (Colocynthis citrullus L.) seed kernel oil. Fuel Processing Technology 2014:122(0):42-48. doi:10.1016/j.fuproc.2014.01.01410.1016/j.fuproc.2014.01.014
  5. [5] Elsheikh Y. A. Preparation of Citrullus colocynthis biodiesel via dual-step catalyzed process using functionalized imidazolium and pyrazolium ionic liquids for esterification step. Industrial Crops and Products 2013:49(0):822-829. doi:10.1016/j.indcrop.2013.06.04110.1016/j.indcrop.2013.06.041
  6. [6] Nehdi I. A. et al. Evaluation and characterisation of Citrullus colocynthis (L.) Schrad seed oil: Comparison with Helianthus annuus (sunflower) seed oil. Food Chemistry 2013:136(2):348-353. doi:10.1016/j.foodchem.2012.09.00910.1016/j.foodchem.2012.09.00923122069
  7. [7] Jarret R. L., Levy I. J. Oil and Fatty Acid Contents in Seed of Citrullus lanatus Schrad. Journal of Agricultural and Food Chemistry 2012:60(20):5199-5204. doi:10.1021/jf300046f10.1021/jf300046f22540530
  8. [8] Hussain A. I. et al. Citrullus colocynthis (L.) Schrad (bitter apple fruit): A review of its phytochemistry, pharmacology, traditional uses and nutritional potential. Journal of Ethnopharmacology 2014:155(1):54-66. doi:10.1016/j.jep.2014.06.01110.1016/j.jep.2014.06.01124936768
  9. [9] Mehta A. et al. Antimycobacterial activity of Citrullus colocynthis (L.) Schrad. against drug sensitive and drug resistant Mycobacterium tuberculosis and MOTT clinical isolates. Journal of Ethnopharmacology 2013:149(1):195-200. doi:10.1016/j.jep.2013.06.02210.1016/j.jep.2013.06.02223816500
  10. [10] Foo K., Hameed B. Preparation and characterization of activated carbon from melon (Citrullus vulgaris) seed hull by microwave-induced NaOH activation. Desalination and Water Treatment 2012:47(1-3):130-138. doi:10.1080/19443994.2012.69682610.1080/19443994.2012.696826
  11. [11] Achigan-Dako E. G. et al. Importance and practices of Egusi crops (Citrullus lanatus (Thunb.) Matsum. & Nakai, Cucumeropsis mannii Naudin and Lagenaria siceraria (Molina) Standl. cv.‘Aklamkpa’) in sociolinguistic areas in Benin. Biotechnology Agronomy, Society and Environment 2008:12(4):393-403.
  12. [12] Ezeike G. O. I. Hygroscopic characteristics of unshelled egusi (melon) seeds. International Journal of Food Science and Technology 1988:23(5):511-519. doi:10.1111/j.1365-2621.1988.tb00608.x10.1111/j.1365-2621.1988.tb00608.x
  13. [13] Vitali F. et al. Agricultural waste as household fuel: Techno-economic assessment of a new rice-husk cookstove for developing countries. Waste Management 2013:33(12):2762-2770. doi:10.1016/j.wasman.2013.08.02610.1016/j.wasman.2013.08.02624064375
  14. [14] Kirsanovs V., Zandeckis A. Investigation of Biomass Gasification Process with Torrefaction Using Equilibrium Model. Energy Procedia 2015:72:329-336. doi:10.1016/j.egypro.2015.06.04810.1016/j.egypro.2015.06.048
  15. [15] Nyakuma B. B. et al. Gasification of Empty Fruit Bunch Briquettes in a Fixed Bed Tubular Reactor for Hydrogen Production. Applied Mechanics and Materials 2014:699:534-539. doi:10.4028/www.scientific.net/AMM.699.53410.4028/www.scientific.net/AMM.699.534
  16. [16] Rusanova J. et al. Technological Alternatives or Use of Wood Fuel in Combined Heat and Power Production. Environmental and Climate Technologies 2013:12(1):10-14. doi:10.2478/rtuect-2013-001010.2478/rtuect-2013-0010
  17. [17] Guerrero L. A., Maas G., Hogland W. Solid waste management challenges for cities in developing countries. Waste Management 2013:33(1):220-232. doi:10.1016/j.wasman.2012.09.00810.1016/j.wasman.2012.09.00823098815
  18. [18] Barisa A. et al. Application of Low-Carbon Technologies for Cutting Household GHG Emissions. Energy Procedia 2015:72:230-237. doi:10.1016/j.egypro.2015.06.03310.1016/j.egypro.2015.06.033
  19. [19] Nyakuma B. B. et al. Non-Isothermal Kinetic Analysis of Oil Palm Empty Fruit Bunch Pellets by Thermogravimetric Analysis. Chemical Engineering Transactions 2015:45:1327-1332. doi:10.3303/CET1545222
  20. [20] Li L. et al. Thermogravimetric and kinetic analysis of energy crop Jerusalem artichoke using the distributed activation energy model. Journal of Thermal Analysis and Calorimetry 2013:114(3):1183-1189. doi:10.1007/s10973-013-3115-210.1007/s10973-013-3115-2
  21. [21] Ceylan S., Topcu Y. Pyrolysis kinetics of hazelnut husk using thermogravimetric analysis. Bioresource Technology 2014:156:182-8. doi:10.1016/j.biortech.2014.01.04010.1016/j.biortech.2014.01.04024508656
  22. [22] Cheng G. et al. Kinetic Study on Pyrolysis of Blooming-forming Cyanobacteria. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2015:37(6):625-632. doi:10.1080/15567036.2011.59086610.1080/15567036.2011.590866
  23. [23] Nyakuma B. B. et al. Thermogravimetric Analysis of the Fuel Properties of Empty Fruit Bunch Briquettes. Jurnal Teknologi 2014:67(3). doi:10.11113/jt.v67.276810.11113/jt.v67.2768
  24. [24] Shen D. K. et al. Thermal degradation mechanisms of wood under inert and oxidative environments using DAEM methods. Bioresource Technology 2011:102(2):2047-2052. doi:10.1016/j.biortech.2010.09.08110.1016/j.biortech.2010.09.08120951030
  25. [25] Cai J., Liu R. New distributed activation energy model: numerical solution and application to pyrolysis kinetics of some types of biomass. Bioresource Technology 2008:99(8):2795-9. doi:10.1016/j.biortech.2007.06.03310.1016/j.biortech.2007.06.03317693085
  26. [26] Sonobe T., Worasuwannarak N. Kinetic analyses of biomass pyrolysis using the distributed activation energy model. Fuel 2008:87(3):414-421. doi:10.1016/j.fuel.2007.05.004 10.1016/j.fuel.2007.05.004
  27. [27] Parikh J., Channiwala S., Ghosal G. A correlation for calculating HHV from proximate analysis of solid fuels. Fuel 2005:84(5):487-494. doi:10.1016/j.fuel.2004.10.01010.1016/j.fuel.2004.10.010
  28. [28] Miura K. A New and Simple Method to Estimate f(E) and k0(E) in the Distributed Activation Energy Model from Three Sets of Experimental Data. Energy & Fuels 1995:9(2):302-307. doi:10.1021/ef00050a01410.1021/ef00050a014
  29. [29] Vladimir V. A theory of the irreversible electrical resistance changes of metallic films evaporated in vacuum. Proceedings of the Physical Society 1943:55(3):222. doi:10.1088/0959-5309/55/3/30810.1088/0959-5309/55/3/308
  30. [30] Miura K., Maki T. A Simple Method for Estimating f(E) and k0(E) in the Distributed Activation Energy Model. Energy & Fuels 1998:12(5):864-869. doi:10.1021/ef970212q10.1021/ef970212q
  31. [31] Vassilev S. V. et al. An overview of the chemical composition of biomass. Fuel 2010:89(5):913-933. doi:10.1016/j.fuel.2009.10.02210.1016/j.fuel.2009.10.022
  32. [32] Natarajan E., Baskara Sethupathy S. Gasification of Groundnut Shells. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2015:37(9):980-986. doi:10.1080/15567036.2011.60179110.1080/15567036.2011.601791
  33. [33] Açıkalın K. Thermogravimetric analysis of walnut shell as pyrolysis feedstock. Journal of Thermal Analysis and Calorimetry 2011:105(1):145-150. doi:10.1007/s10973-010-1267-x10.1007/s10973-010-1267-x
  34. [34] Nyakuma B. B., Johari A., Ahmad A. Analysis of the pyrolytic fuel properties of empty fruit bunch briquettes. Journal of Applied Sciences 2012:12(24):2527-2533. doi:10.3923/jas.2012.2527.253310.3923/jas.2012.2527.2533
  35. [35] Nyakuma B. B. et al. Comparative analysis of the calorific fuel properties of Empty Fruit Bunch Fiber and Briquette. Energy Procedia 2014:52:466-473. doi:10.1016/j.egypro.2014.07.09910.1016/j.egypro.2014.07.099
  36. [36] Pattiya A. Thermochemical Characterization of Agricultural Wastes from Thai Cassava Plantations. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2011:33(8):691-701. doi:10.1080/1556703090322892210.1080/15567030903228922
  37. [37] Lopez-Velazquez M. A. et al. Pyrolysis of orange waste: A thermo-kinetic study. Journal of Analytical and Applied Pyrolysis 2013:99:170-177. doi:10.1016/j.jaap.2012.09.01610.1016/j.jaap.2012.09.016
  38. [38] Yang H. et al. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007:86(12-13):1781-1788. doi:10.1016/j.fuel.2006.12.01310.1016/j.fuel.2006.12.013
  39. [39] McKendry P. Energy production from biomass (part 1): overview of biomass. Bioresource Technology 2002:83(1): 37-46. doi:10.1016/S0960-8524(01)00118-310.1016/S0960-8524(01)00118-3
  40. [40] Islam M. A., Asif M., Hameed B. Pyrolysis kinetics of raw and hydrothermally carbonized Karanj (Pongamia pinnata) fruit hulls via thermogravimetric analysis. Bioresource Technology 2015:179:227-233. doi:10.1016/j.biortech.2014.11.11510.1016/j.biortech.2014.11.11525545092
  41. [41] Damartzis T. et al. Thermal degradation studies and kinetic modeling of cardoon (Cynara cardunculus) pyrolysis using thermogravimetric analysis (TGA). Bioresource Technology 2011:102(10):6230-8. doi:10.1016/j.biortech.2011.02.06010.1016/j.biortech.2011.02.06021398116
  42. [42] Slopiecka K., Bartocci P., Fantozzi F. Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Applied Energy 2012:97:491-497. doi:10.1016/j.apenergy.2011.12.05610.1016/j.apenergy.2011.12.056
  43. [43] Idris S. S. et al. Investigation on thermochemical behaviour of low rank Malaysian coal, oil palm biomass and their blends during pyrolysis via thermogravimetric analysis (TGA). Bioresource Technology 2010:101(12):4584-4592. doi:10.1016/j.biortech.2010.01.05910.1016/j.biortech.2010.01.05920153633
  44. [44] Chutia R. S., Kataki R., Bhaskar T. Thermogravimetric and decomposition kinetic studies of Mesua ferrea L. deoiled cake. Bioresource Technology 2013:139(0):66-72. doi:10.1016/j.biortech.2013.03.19110.1016/j.biortech.2013.03.19123644072
  45. [45] Quan C., Li A., Gao N. Thermogravimetric analysis and kinetic study on large particles of printed circuit board wastes. Waste Management 2009:29(8):2353-2360. doi:10.1016/j.wasman.2009.03.020 10.1016/j.wasman.2009.03.02019398318
DOI: https://doi.org/10.1515/rtuect-2015-0007 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 77 - 89
Published on: Feb 12, 2016
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2016 Bemgba Bevan Nyakuma, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.