[2] Straathof A. J. Transformation of biomass into commodity chemicals using enzymes or cells. Chemical Reviews 2014:114(3):1871-908. doi:10.1021/cr400309c10.1021/cr400309c23987659
[4] Giwa S. O., Chuah L. A., Adam N. M. Fuel properties and rheological behavior of biodiesel from egusi (Colocynthis citrullus L.) seed kernel oil. Fuel Processing Technology 2014:122(0):42-48. doi:10.1016/j.fuproc.2014.01.01410.1016/j.fuproc.2014.01.014
[5] Elsheikh Y. A. Preparation of Citrullus colocynthis biodiesel via dual-step catalyzed process using functionalized imidazolium and pyrazolium ionic liquids for esterification step. Industrial Crops and Products 2013:49(0):822-829. doi:10.1016/j.indcrop.2013.06.04110.1016/j.indcrop.2013.06.041
[6] Nehdi I. A. et al. Evaluation and characterisation of Citrullus colocynthis (L.) Schrad seed oil: Comparison with Helianthus annuus (sunflower) seed oil. Food Chemistry 2013:136(2):348-353. doi:10.1016/j.foodchem.2012.09.00910.1016/j.foodchem.2012.09.00923122069
[7] Jarret R. L., Levy I. J. Oil and Fatty Acid Contents in Seed of Citrullus lanatus Schrad. Journal of Agricultural and Food Chemistry 2012:60(20):5199-5204. doi:10.1021/jf300046f10.1021/jf300046f22540530
[8] Hussain A. I. et al. Citrullus colocynthis (L.) Schrad (bitter apple fruit): A review of its phytochemistry, pharmacology, traditional uses and nutritional potential. Journal of Ethnopharmacology 2014:155(1):54-66. doi:10.1016/j.jep.2014.06.01110.1016/j.jep.2014.06.01124936768
[9] Mehta A. et al. Antimycobacterial activity of Citrullus colocynthis (L.) Schrad. against drug sensitive and drug resistant Mycobacterium tuberculosis and MOTT clinical isolates. Journal of Ethnopharmacology 2013:149(1):195-200. doi:10.1016/j.jep.2013.06.02210.1016/j.jep.2013.06.02223816500
[10] Foo K., Hameed B. Preparation and characterization of activated carbon from melon (Citrullus vulgaris) seed hull by microwave-induced NaOH activation. Desalination and Water Treatment 2012:47(1-3):130-138. doi:10.1080/19443994.2012.69682610.1080/19443994.2012.696826
[11] Achigan-Dako E. G. et al. Importance and practices of Egusi crops (Citrullus lanatus (Thunb.) Matsum. & Nakai, Cucumeropsis mannii Naudin and Lagenaria siceraria (Molina) Standl. cv.‘Aklamkpa’) in sociolinguistic areas in Benin. Biotechnology Agronomy, Society and Environment 2008:12(4):393-403.
[13] Vitali F. et al. Agricultural waste as household fuel: Techno-economic assessment of a new rice-husk cookstove for developing countries. Waste Management 2013:33(12):2762-2770. doi:10.1016/j.wasman.2013.08.02610.1016/j.wasman.2013.08.02624064375
[16] Rusanova J. et al. Technological Alternatives or Use of Wood Fuel in Combined Heat and Power Production. Environmental and Climate Technologies 2013:12(1):10-14. doi:10.2478/rtuect-2013-001010.2478/rtuect-2013-0010
[19] Nyakuma B. B. et al. Non-Isothermal Kinetic Analysis of Oil Palm Empty Fruit Bunch Pellets by Thermogravimetric Analysis. Chemical Engineering Transactions 2015:45:1327-1332. doi:10.3303/CET1545222
[20] Li L. et al. Thermogravimetric and kinetic analysis of energy crop Jerusalem artichoke using the distributed activation energy model. Journal of Thermal Analysis and Calorimetry 2013:114(3):1183-1189. doi:10.1007/s10973-013-3115-210.1007/s10973-013-3115-2
[22] Cheng G. et al. Kinetic Study on Pyrolysis of Blooming-forming Cyanobacteria. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2015:37(6):625-632. doi:10.1080/15567036.2011.59086610.1080/15567036.2011.590866
[23] Nyakuma B. B. et al. Thermogravimetric Analysis of the Fuel Properties of Empty Fruit Bunch Briquettes. Jurnal Teknologi 2014:67(3). doi:10.11113/jt.v67.276810.11113/jt.v67.2768
[25] Cai J., Liu R. New distributed activation energy model: numerical solution and application to pyrolysis kinetics of some types of biomass. Bioresource Technology 2008:99(8):2795-9. doi:10.1016/j.biortech.2007.06.03310.1016/j.biortech.2007.06.03317693085
[28] Miura K. A New and Simple Method to Estimate f(E) and k0(E) in the Distributed Activation Energy Model from Three Sets of Experimental Data. Energy & Fuels 1995:9(2):302-307. doi:10.1021/ef00050a01410.1021/ef00050a014
[29] Vladimir V. A theory of the irreversible electrical resistance changes of metallic films evaporated in vacuum. Proceedings of the Physical Society 1943:55(3):222. doi:10.1088/0959-5309/55/3/30810.1088/0959-5309/55/3/308
[30] Miura K., Maki T. A Simple Method for Estimating f(E) and k0(E) in the Distributed Activation Energy Model. Energy & Fuels 1998:12(5):864-869. doi:10.1021/ef970212q10.1021/ef970212q
[32] Natarajan E., Baskara Sethupathy S. Gasification of Groundnut Shells. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2015:37(9):980-986. doi:10.1080/15567036.2011.60179110.1080/15567036.2011.601791
[33] Açıkalın K. Thermogravimetric analysis of walnut shell as pyrolysis feedstock. Journal of Thermal Analysis and Calorimetry 2011:105(1):145-150. doi:10.1007/s10973-010-1267-x10.1007/s10973-010-1267-x
[34] Nyakuma B. B., Johari A., Ahmad A. Analysis of the pyrolytic fuel properties of empty fruit bunch briquettes. Journal of Applied Sciences 2012:12(24):2527-2533. doi:10.3923/jas.2012.2527.253310.3923/jas.2012.2527.2533
[36] Pattiya A. Thermochemical Characterization of Agricultural Wastes from Thai Cassava Plantations. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2011:33(8):691-701. doi:10.1080/1556703090322892210.1080/15567030903228922
[40] Islam M. A., Asif M., Hameed B. Pyrolysis kinetics of raw and hydrothermally carbonized Karanj (Pongamia pinnata) fruit hulls via thermogravimetric analysis. Bioresource Technology 2015:179:227-233. doi:10.1016/j.biortech.2014.11.11510.1016/j.biortech.2014.11.11525545092
[41] Damartzis T. et al. Thermal degradation studies and kinetic modeling of cardoon (Cynara cardunculus) pyrolysis using thermogravimetric analysis (TGA). Bioresource Technology 2011:102(10):6230-8. doi:10.1016/j.biortech.2011.02.06010.1016/j.biortech.2011.02.06021398116
[43] Idris S. S. et al. Investigation on thermochemical behaviour of low rank Malaysian coal, oil palm biomass and their blends during pyrolysis via thermogravimetric analysis (TGA). Bioresource Technology 2010:101(12):4584-4592. doi:10.1016/j.biortech.2010.01.05910.1016/j.biortech.2010.01.05920153633
[44] Chutia R. S., Kataki R., Bhaskar T. Thermogravimetric and decomposition kinetic studies of Mesua ferrea L. deoiled cake. Bioresource Technology 2013:139(0):66-72. doi:10.1016/j.biortech.2013.03.19110.1016/j.biortech.2013.03.19123644072
[45] Quan C., Li A., Gao N. Thermogravimetric analysis and kinetic study on large particles of printed circuit board wastes. Waste Management 2009:29(8):2353-2360. doi:10.1016/j.wasman.2009.03.02010.1016/j.wasman.2009.03.02019398318