Have a personal or library account? Click to login
Feasibility of Applying Clean Development Mechanism and GHGs Emission Reductions in the Gold Mining Industry: A Case of Thailand Cover

Feasibility of Applying Clean Development Mechanism and GHGs Emission Reductions in the Gold Mining Industry: A Case of Thailand

Open Access
|Feb 2016

References

  1. [1] Stern N. Stern Review on the Economic of Climate Change. Cambridge, UK: Cambridge University Press, 2007.10.1017/CBO9780511817434
  2. [2] UNFCCC. Kyoto Protocol to the United Nations Framework Convention on Climate Change [Online]. Available: http://unfccc.int/cop5/resource/docs/cop3/l07a01.pdf
  3. [3] Kittipongvises S. Potential of clean development mechanism activities (CDM) activities for greenhouse gases reduction at a starch-processing factory in Thailand, Master’s thesis. Asian Institute of Technology, Thailand, 2008.
  4. [4] OECD. Policies to Reduce Greenhouse Gas Emissions in Industry - Successful Approaches and Lessons Learned: Workshop Report, OECD Paper 2004:4(2):1
  5. [5] IPCC. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, United Kingdom and New York, USA: Cambridge University Press, 2014
  6. [6] JGSEE, KMUTT. Thailand’s Second National Communications to the UNFCCC: Greenhouse Gas Inventory [Online] Available: https://unfccc.int/files/national_reports/non-nnex_i_natcom/submitted_natcom/application/pdf/snc_thailand.pdf
  7. [7] IPCC. Fourth Assessment Report [Online]. Available: http://www.ipcc.ch/ipccreports/ar4-syr.htm
  8. [8] TGO. Current Status of CDM in Thailand [Online]. Available: http://www.tgo.or.th/index.php?option=com_content&view=category&id=60&Itemid=91
  9. [9] UNFCCC. List of sectoral scopes [Online]. Available: http://cdm.unfccc.int/DOE/scopelst.pdf
  10. [10] Bank of Thailand. Thailand’s economic condition in 2010 [Online]. Available: http://www.bot.or.th/English/EconomicConditions/Thai/report/AnnualReport_Doc/AnnualReport_2010.pdf
  11. [11] Department of Primary Industries and Mines, Ministry of Industry. Mineral Statistics of Thailand 2012-2013 (Fiscal year), 2014
  12. [12] TGO. GHG emission by sector in CO2 equivalent (Million tons) and percent for 2000 [Online]. Available: http://www.tgo.or.th/english/index.php?option=com_content&view=article&id=45&Itemid=71
  13. [13] EPA's Greenhouse Gas Emission Reductions [Online]. Available: http://www.epa.gov/greeningepa/ghg/
  14. [14] EPA. Quantifying Greenhouse Gas Emissions from Key Industrial Sectors in the United States: Working Draft, 2008
  15. [15] Greenhouse Gas Division Environment Canada. Guidance Manual for Estimating Greenhouse Gas Emissions: Metal Mining [Online]. Available: http://publications.gc.ca/collections/Collection/En49-2-9-2E.pdf
  16. [16] Mining Association of Canada, Inventorying, Measuring and Reporting on Climate Change Actions, Report, Pembina Institute and Stratos Inc, 2000
  17. [17] GAIMAN. Gold Recovery Processes [Online]. Available: http://64.17.179.176/blog/gold-recovery-processes.html
  18. [18] Department of Primary Industries and Mines, Ministry of Industry and Faculty of Engineering, Chiang Mai University, Thailand. An evaluation of CDM project development in the mining industry: Final report, 2010.
  19. [19] TGO. Carbon Footprint for Organization: Emission factor [Online]. Available: http://thaicarbonlabel.tgo.or.th/download/Emission_Factor_CFO.pdf
  20. [20] TGO. Carbon Footprint of Products: Emission factor [Online]. Available: http://thaicarbonlabel.tgo.or.th/download/Emission_Factor_CFP.pdf
  21. [21] Norgate T., Haque N. Energy and greenhouse gas impacts of mining and mineral processing operations. Journal of Cleaner Production 2010:18:266-274. doi:10.1016/j.jclepro.2009.09.02010.1016/j.jclepro.2009.09.020
  22. [22] Norgate T., Haque N. Using life cycle assessment to evaluate some environmental impacts of gold production. Journal of Cleaner Production 2012:29-30:53-63. doi:10.1016/j.jclepro.2012.01.04210.1016/j.jclepro.2012.01.042
  23. [23] Boyan R., Peter S. Preliminary GHG Emission Inventory, DPM Krumovgrad, Sofia, Bulgaria [Online]. Available: http://www.dundeeprecious.com/files/technical_reports/Preliminary_GHG_Inventory_EN_v001_y248z1.pdf
  24. [24] Haque N., Norgate T. The greenhouse gas footprint of in-situ leaching of uranium, gold and copper in Australia. Journal of Cleaner Production 2014:84:382-390. doi:10.1016/j.jclepro.2013.09.03310.1016/j.jclepro.2013.09.033
  25. [25] Yahaya N. R., Murad M., Morad N., Fizri F. F. A. Environmental impact of electricity consumption in crushing and grinding processes of traditional and urban gold mining by using life cycle assessment (LCA). Iranica Journal of Energy & Environment 2012:3:66-73.10.5829/idosi.ijee.2012.03.05.11
  26. [26] UNFCCC. Report of the Conference of the Parties on its seventh session. Addendum part two: Action taken by the Conference of the Parties. Vol. II. Modalities and procedures for a clean development mechanism as defined in Article 12 of the Kyoto Protocol, Marrakech, 2001.
  27. [27] Gary C. The Clean Development Mechanism as a Vehicle for Technology Transfer and Sustainable Development - Myth or Reality? Law, Environment and Development Journal 2010:6(2):179.
  28. [28] Chavalala B., Nhamo G. Clean and energy efficient technology as green economy transition mechanism in South African gold mining: case of Kusasalethu. Environmental Economics 2014:5:74-83.
  29. [29] US Department of Energy. Industrial Technologies Program. Mining Industry Energy Bandwidth Study June 2007 [Online]. Available: http://www1.eere.energy.gov/manufacturing/resources/mining/pdfs/mining_bandwidth.pdf
  30. [30] Taylor A. Gold technology developments and trends. ALTA 2010 Gold Conference, Perth, Western Australia, 2010
  31. [31] Dunne R. C., Goulsbra A., Dunlop I. High pressure grinding rolls and the effect on liberation: Comparative Test Results. Randol Gold Forum 96, Olympic Valley, 1996
  32. [32] Van der Meer F., Maphosa W. High pressure grinding moving ahead in copper, iron and gold processing. 6th Southern African Base Metals Conference, Phalaborwa, South Africa, 2011:389-410.
  33. [33] Cembureau, Best Available Techniques for the Cement Industry, Brussels: Cembureau, 1997.
  34. [34] Institute for industrial productivity. Vertical Roller Mills for finish grinding [Online]. Available: http://ietd.iipnetwork.org/content/vertical-roller-mills-finish-grinding
  35. [35] Harcus M. Golden age. Mining Magazine 2011:57-67
  36. [36] Chadwick J. Golden horizons. International Mining 2011:68-76
  37. [37] Hasanbeigi A., Menke C., Price L. The CO2 abatement cost curve for the Thailand cement industry. Journal of Cleaner Production 2010:18:1509-1518. doi:10.1016/j.jclepro.2010.06.00510.1016/j.jclepro.2010.06.005
  38. [38] Hasanbeigi A., Price L., Lu H., Lan W. Analysis of energy-efficiency opportunities for the cement industry in Shandong Province, China: A case study of 16 cement plants. Energy 2010:35:3461-3473. doi:10.1016/j.energy.2010.04.04610.1016/j.energy.2010.04.046
  39. [39] Worrell E., Galitsky C., Price L. Energy Efficiency Improvement Opportunities for the Cement Industry. Berkeley, CA: Lawrence Berkeley National Laboratory, 2008 [Online]. Available: http://ies.lbl.gov/node/40210.2172/939891
  40. [40] Šommet J. Sustainable Development in Estonian Mining. Environmental and Climate Technologies 2013:11:31-40. doi:10.2478/rtuect-2013-000510.2478/rtuect-2013-0005
  41. [41] Pruse I. European Union Emissions Trading System with Regard to Climate Change Mitigation in Latvia. Environmental and Climate Technologies 2012:8:29-35. doi:10.2478/v10145-012-0005-y10.2478/v10145-012-0005-y
  42. [42] Laicane I., Rosa M., Dzene I. Application of CO2 Taxes for Combustion Installations in Latvia until 2020. Environmental and Climate Technologies 2012:6:44-48. doi:10.2478/v10145-011-0006-210.2478/v10145-011-0006-2
  43. [43] Liang X., Wang Z., Zhou Z., Huang Z., Zhou J., Cen K. Up-to-date life cycle assessment and comparison study of clean coal power generation technologies in China. Journal of Cleaner Production 2013:39:24-31. doi:10.1016/j.jclepro.2012.08.00310.1016/j.jclepro.2012.08.003
  44. [44] Korre A., Nie Z., Durucan S. Life cycle modelling of fossil fuel power generation with post-combustion CO2 capture. International Journal of Greenhouse Gas Control 2010:4:289-300. doi:10.1016/j.egypro.2009.02.17710.1016/j.egypro.2009.02.177
  45. [45] Nie Z., Korre A., Duracan S. Life cycle modelling and comparative assessment of the environmental impacts of oxyfuel and post-combustion CO2 capture, transport and injection processes. Energy Procedia 2011:.4:2510-2517. doi:10.1016/j.egypro.2011.02.14710.1016/j.egypro.2011.02.147
  46. [46] Odeh N. A., Cockerill T. T. Life cycle GHG assessment of fossil fuel power plants with carbon capture and storage. Energy Policy 2010:36:367-380. doi:10.1016/j.enpol.2007.09.02610.1016/j.enpol.2007.09.026
  47. [47] Banan Z., Maleki A. Carbon Capture & Storage Deployment in Iran. Energy Procedia 2013:37:7492-7501. doi:10.1016/j.egypro.2013.06.69310.1016/j.egypro.2013.06.693
  48. [48] Heijungs R. Ecodesign - carbon footprint - life cycle assessment - life cycle sustainability analysis. A flexible framework for a continuum of tools. Environmental and Climate Technologies 2010:4:42-46. doi:10.2478/v10145-010-0016-5 10.2478/v10145-010-0016-5
DOI: https://doi.org/10.1515/rtuect-2015-0004 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 34 - 47
Published on: Feb 12, 2016
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2016 Suthirat Kittipongvises, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.