[2] UNFCCC. Kyoto Protocol to the United Nations Framework Convention on Climate Change [Online]. Available: http://unfccc.int/cop5/resource/docs/cop3/l07a01.pdf
[3] Kittipongvises S. Potential of clean development mechanism activities (CDM) activities for greenhouse gases reduction at a starch-processing factory in Thailand, Master’s thesis. Asian Institute of Technology, Thailand, 2008.
[5] IPCC. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, United Kingdom and New York, USA: Cambridge University Press, 2014
[6] JGSEE, KMUTT. Thailand’s Second National Communications to the UNFCCC: Greenhouse Gas Inventory [Online] Available: https://unfccc.int/files/national_reports/non-nnex_i_natcom/submitted_natcom/application/pdf/snc_thailand.pdf
[10] Bank of Thailand. Thailand’s economic condition in 2010 [Online]. Available: http://www.bot.or.th/English/EconomicConditions/Thai/report/AnnualReport_Doc/AnnualReport_2010.pdf
[12] TGO. GHG emission by sector in CO2 equivalent (Million tons) and percent for 2000 [Online]. Available: http://www.tgo.or.th/english/index.php?option=com_content&view=article&id=45&Itemid=71
[15] Greenhouse Gas Division Environment Canada. Guidance Manual for Estimating Greenhouse Gas Emissions: Metal Mining [Online]. Available: http://publications.gc.ca/collections/Collection/En49-2-9-2E.pdf
[18] Department of Primary Industries and Mines, Ministry of Industry and Faculty of Engineering, Chiang Mai University, Thailand. An evaluation of CDM project development in the mining industry: Final report, 2010.
[25] Yahaya N. R., Murad M., Morad N., Fizri F. F. A. Environmental impact of electricity consumption in crushing and grinding processes of traditional and urban gold mining by using life cycle assessment (LCA). Iranica Journal of Energy & Environment 2012:3:66-73.10.5829/idosi.ijee.2012.03.05.11
[26] UNFCCC. Report of the Conference of the Parties on its seventh session. Addendum part two: Action taken by the Conference of the Parties. Vol. II. Modalities and procedures for a clean development mechanism as defined in Article 12 of the Kyoto Protocol, Marrakech, 2001.
[27] Gary C. The Clean Development Mechanism as a Vehicle for Technology Transfer and Sustainable Development - Myth or Reality? Law, Environment and Development Journal 2010:6(2):179.
[28] Chavalala B., Nhamo G. Clean and energy efficient technology as green economy transition mechanism in South African gold mining: case of Kusasalethu. Environmental Economics 2014:5:74-83.
[29] US Department of Energy. Industrial Technologies Program. Mining Industry Energy Bandwidth Study June 2007 [Online]. Available: http://www1.eere.energy.gov/manufacturing/resources/mining/pdfs/mining_bandwidth.pdf
[31] Dunne R. C., Goulsbra A., Dunlop I. High pressure grinding rolls and the effect on liberation: Comparative Test Results. Randol Gold Forum 96, Olympic Valley, 1996
[32] Van der Meer F., Maphosa W. High pressure grinding moving ahead in copper, iron and gold processing. 6th Southern African Base Metals Conference, Phalaborwa, South Africa, 2011:389-410.
[34] Institute for industrial productivity. Vertical Roller Mills for finish grinding [Online]. Available: http://ietd.iipnetwork.org/content/vertical-roller-mills-finish-grinding
[38] Hasanbeigi A., Price L., Lu H., Lan W. Analysis of energy-efficiency opportunities for the cement industry in Shandong Province, China: A case study of 16 cement plants. Energy 2010:35:3461-3473. doi:10.1016/j.energy.2010.04.04610.1016/j.energy.2010.04.046
[39] Worrell E., Galitsky C., Price L. Energy Efficiency Improvement Opportunities for the Cement Industry. Berkeley, CA: Lawrence Berkeley National Laboratory, 2008 [Online]. Available: http://ies.lbl.gov/node/40210.2172/939891
[41] Pruse I. European Union Emissions Trading System with Regard to Climate Change Mitigation in Latvia. Environmental and Climate Technologies 2012:8:29-35. doi:10.2478/v10145-012-0005-y10.2478/v10145-012-0005-y
[42] Laicane I., Rosa M., Dzene I. Application of CO2 Taxes for Combustion Installations in Latvia until 2020. Environmental and Climate Technologies 2012:6:44-48. doi:10.2478/v10145-011-0006-210.2478/v10145-011-0006-2
[43] Liang X., Wang Z., Zhou Z., Huang Z., Zhou J., Cen K. Up-to-date life cycle assessment and comparison study of clean coal power generation technologies in China. Journal of Cleaner Production 2013:39:24-31. doi:10.1016/j.jclepro.2012.08.00310.1016/j.jclepro.2012.08.003
[44] Korre A., Nie Z., Durucan S. Life cycle modelling of fossil fuel power generation with post-combustion CO2 capture. International Journal of Greenhouse Gas Control 2010:4:289-300. doi:10.1016/j.egypro.2009.02.17710.1016/j.egypro.2009.02.177
[45] Nie Z., Korre A., Duracan S. Life cycle modelling and comparative assessment of the environmental impacts of oxyfuel and post-combustion CO2 capture, transport and injection processes. Energy Procedia 2011:.4:2510-2517. doi:10.1016/j.egypro.2011.02.14710.1016/j.egypro.2011.02.147
[48] Heijungs R. Ecodesign - carbon footprint - life cycle assessment - life cycle sustainability analysis. A flexible framework for a continuum of tools. Environmental and Climate Technologies 2010:4:42-46. doi:10.2478/v10145-010-0016-510.2478/v10145-010-0016-5