Have a personal or library account? Click to login
Methodologies Used for Scaling-up From a Single Energy Production Unit to State Energy Sector Cover

Methodologies Used for Scaling-up From a Single Energy Production Unit to State Energy Sector

Open Access
|Feb 2016

References

  1. [1] Judl J., Koskela S., Korpela T., Karvosenoja N., Häyrinen A., Rantsi J. Net environmental impacts of low-share wood pellet co-combustion in an existing coal-fired CHP (combined heat and power) production in Helsinki, Finland. Energy 2014:77:844-851. doi:10.1016/j.energy.2014.09.06810.1016/j.energy.2014.09.068
  2. [2] Haberl H., Beringer T., Bhattacharya S. C., Erb K. H., Hoogwijk M. The global technical potential of bio-energy in 2050 considering sustainability constraints. Current Opinion in Environmental Sustainability 2010:2(5-6):394-403. doi:10.1016/j.cosust.2010.10.00710.1016/j.cosust.2010.10.007377885424069093
  3. [3] EC, European Commission, Energy 2020. A strategy for competitive, sustainable and secure energy, COM (2010) 639 Final, 2010, 21 p.
  4. [4] EC, European Commission, Informative report long-term energy strategy of Latvia 2030 - competitive energy for the society, 2015, 12 p.
  5. [5] EC, European Commission, Directive 2004/8/EC of the European Parliament and of the Council of 11 February 2004 on the promotion of cogeneration based on a useful heat demand in the internal energy market and amending Directive 92/42/EEC, Off. J. Eur. Union, 2004, 50-60.
  6. [6] Frangopoulos C. A. A method to determine the power to heat ratio, the cogenerated electricity and the primary energy savings of cogeneration systems after the European Directive. Energy 2012:45(1):52-61. doi:10.1016/j.energy.2011.12.04410.1016/j.energy.2011.12.044
  7. [7] Srirangan K., Akawi L., Moo-Young M., Chou C. P. Towards sustainable production of clean energy carriers from biomass resources. Applied Energy 2012:100:172-186. doi:10.1016/j.apenergy.2012.05.01210.1016/j.apenergy.2012.05.012
  8. [8] Raj N. T., Iniyan S., Goic R. A review of renewable energy based cogeneration technologies. Renewable and Sustainable Energy Reviews 2011:15(8):3640-3648. doi:10.1016/j.rser.2011.06.00310.1016/j.rser.2011.06.003
  9. [9] Çakir U., Çomakli K., Yüksel F. The role of cogeneration systems in sustainability of energy. Energy Conversion and Management 2012:63:196-202. doi:10.1016/j.enconman.2012.01.04110.1016/j.enconman.2012.01.041
  10. [10] Leduc S., Wetterlund E., Dotzauer E., Kindermann G. CHP or biofuel production in Europe? Energy Procedia 2012:20:40-49. doi:10.1016/j.egypro.2012.03.00610.1016/j.egypro.2012.03.006
  11. [11] Cimdina G., Prodanuks T., Veidenbergs I., Blumberga D. Sustainable Development of Biomass CHP in Latvia, Energy Procedia 2015 - Article in Press.10.1016/j.egypro.2016.09.026
  12. [12] Cimdiņa G., Veidenbergs I., Kamenders A., Ziemele J., Pakere I., Blumberga A., Blumberga D. Modelling of biomass cogeneration plant efficiency. Agronomy Research 2014:12 (2):455-468.
  13. [13] Prato A. P., Strobino F., Broccardo M., Giusino L. P. Integrated management of cogeneration plants and district heating networks. Applied Energy 2012:97:590-600. doi:10.1016/j.apenergy.2012.02.03810.1016/j.apenergy.2012.02.038
  14. [14] Sha S., Hurme M. Emergy evaluation of combined heat and power plant processes. Applied Thermal Engineering 2012:43:67-74. doi:10.1016/j.applthermaleng.2011.11.06310.1016/j.applthermaleng.2011.11.063
  15. [15] Noussan M., Abdin G. C., Poggio A., Roberto R. Biomass-fired CHP and heat storage system simulations in existing district heating systems. Applied Thermal Engineering 2014:71(2):729-735. doi:10.1016/j.applthermaleng.2013.11.02110.1016/j.applthermaleng.2013.11.021
  16. [16] Taljan G., Verbič G., Pantoš M., Sakulin M., Fickert L. Optimal sizing of biomass-fired Organic Rankine Cycle CHP system with heat storage. Renewable Energy 2012:41:29-38. doi:10.1016/j.renene.2011.09.03410.1016/j.renene.2011.09.034
  17. [17] Brown M. T., Ulgiati S. Emergy analysis and environmental accounting. Encyclopedia of Energy 2004:2:329-354.10.1016/B0-12-176480-X/00242-4
  18. [18] Pal M., Kumar A., Chandra H. Energy and exergy analysis of boiler and turbine of coal fired thermal power plant. International Journal of Engineering Research & Technology 2013:2(6):1428-1439.
  19. [19] Yingjian L., Qi Q., Xiangzhu H., Jiezhi L. Energy balance and efficiency analysis for power generation in internal combustion engine sets using biogas. Sustainable Energy Technologies and Assessments 2014:6:25-33. doi:10.1016/j.seta.2014.01.00310.1016/j.seta.2014.01.003
  20. [20] Holmberg H., Ruohonen P., Ahtila P. Determination of the real loss of power for a condensing and a backpressure turbine by means of second law analysis. Entropy 2009:11:702-712. doi:10.3390/e1104070210.3390/e11040702
  21. [21] Kanoglu M., Dincer I. Performance assessment of cogeneration plants. Energy Conversion and Management 2009:50:76-81. doi:10.1016/j.enconman.2008.08.02910.1016/j.enconman.2008.08.029
  22. [22] Ghazikhani M., Khazaee I., Abdekhodaie E. Exergy analysis of gas turbine with air bottoming cycle. Energy 2014:72:599-607. doi:10.1016/j.energy.2014.05.08510.1016/j.energy.2014.05.085
  23. [23] Kecebas A. Energetic, exergetic, economic and environmental evaluations of geothermal district heating systems: an application. Energy Conversion and Management 2013:65:546-556.10.1016/j.enconman.2012.07.021
  24. [24] Kaska O. Energy and exergy analysis of organic Rankine for power generation from heat recovery in steel industry. Energy Conversion and Management 2014:77:108-117. doi:10.1016/j.enconman.2013.09.02610.1016/j.enconman.2013.09.026
  25. [25] Ertesvag I. Exergetic comparison of efficiency indicators for combined heat and power (CHP). Energy 2007:32:2038-2050. doi:10.1016/j.energy.2007.05.00510.1016/j.energy.2007.05.005
  26. [26] Karklina K., Cimdina G., Veidenbergs I., Blumberga D. Energy and exergy analysis of wood-based CHP. Case study. Energy Procedia 2015 - Article in Press.10.1016/j.egypro.2016.09.076
  27. [27] Odum H. T. Environmental accounting: emergy and environment decision making, New York: John Wiley and Sons, 1996, 384 p.
  28. [28] Brown M. T., Ulgiati S. Emergy-based indices and ratios to evaluate sustainability: monitoring economies and technology toward environmentally sound innovation. Ecological Engineering 1997:9(1-2):51-69.10.1016/S0925-8574(97)00033-5
  29. [29] Brown M. T. Ulgiati S. Emergy evaluations and environmental loading of electricity production systems. Journal of Cleaner Production 2002:10:321-334. doi:10.1016/S0959-6526(01)00043-910.1016/S0959-6526(01)00043-9
  30. [30] Cimdiņa G., Prodaņuks T., Veidenbergs I., Blumberga D. Review-Based Emergy Analysis of Energy Production. Environment. Technology. Resources: Proceedings of the 10th International Scientific and Practical Conference 2015:2:85-90. doi:10.17770/etr2015vol2.62910.17770/etr2015vol2.629
  31. [31] Mitra S., Sun L., Grossmann I. E. Optimal scheduling of industrial combined heat and power plants under timesensitive electricity prices. Energy 2013:54:194-211. doi:10.1016/j.energy.2013.02.03010.1016/j.energy.2013.02.030
  32. [32] Cimdina G., Blumberga D., Veidenbergs I. Analysis of Wood Fuel CHP Operational Experience. Energy Procedia 2015:72:263-269. doi:10.1016/j.egypro.2015.06.03810.1016/j.egypro.2015.06.038
  33. [33] Lončar D., Ridjan I. Medium term development prospects of cogeneration district heating systems in transition country - Croatian case. Energy 2012:48(1):32-39. doi:10.1016/j.energy.2012.07.02510.1016/j.energy.2012.07.025
  34. [34] Finney K. N., Zhou J., Chen Q., Zhang X., Chan C., Sharifi C. N., Swithenbank J., Nolan A., White S., Ogden S., Bradford R. Modelling and mapping sustainable heating for cities. Applied Thermal Engineering 2013:53(2):246-255. doi:10.1016/j.applthermaleng.2012.04.00910.1016/j.applthermaleng.2012.04.009
  35. [35] Ziębik A., Gładysz P. Optimal coefficient of the share of cogeneration in district heating systems. Energy 2012:45:220-227. doi:10.1016/j.energy.2012.02.07110.1016/j.energy.2012.02.071
  36. [36] Gładysz P., Ziębik A. Complex analysis of the optimal coefficient of the share of cogeneration in district heating systems. Energy 2013:62:12-22. doi:10.1016/j.energy.2013.04.03210.1016/j.energy.2013.04.032
  37. [37] Cimdina G., Slisane Dz., Ziemele J., Vitolins V., Vigants G., Blumberga D. Sustainable Development of Renewable Energy Resources. Biomass Cogeneration Plant. Proceedings of the 9th International Conference „Environmental Engineering” 2014:256:1-7. doi:10.3846/enviro.2014.25610.3846/enviro.2014.256
  38. [38] Fahlen E., Ahlgren E. O. Assessment of integration of different biomass gasification alternatives in a district heating system. Energy 2009:34:2184-2195. doi:10.1016/j.energy.2008.10.01810.1016/j.energy.2008.10.018
  39. [39] Fahlen E., Trigg L., Ahlgren E. O. Assessment of absorption cooling as a district heating system strategy - A case study. Energy Conversion and Management 2012:60:115-124.10.1016/j.enconman.2012.02.009
  40. [40] Blumberga D., Bazbauers G., Blumberga A., Cimdina G., Rochas C. Development of district heating systems - cogeneration versus energy efficiency of end user. Proceedings of the 13th International Symposium on District Heating and Cooling 2012:17-24.
  41. [41] Bažbauers G., Cimdiņa G. The Role of the Latvian District Heating System in the Development of Sustainable Energy Supply. Environmental and Climate Technologies 2011:7:27-31. doi:10.2478/v10145-011-0024-010.2478/v10145-011-0024-0
  42. [42] CSB, Latvian Central Statistical Bureau database, available at: www.csb.gov.lv, 2013.
  43. [43] Barisa A., Cimdina G., Romagnoli F., Blumberga D. Potential for bioenergy development in Latvia: Future trend analysis. Agronomy Research 2013:11(2):275-282.
  44. [44] Dubrovskis D. Forest resource in Latvia. Materials of the 5th Latvian Green Energy Forum, 7th September, Riga, Latvia.
  45. [45] Madlener R. Innovation diffusion, public policy, and local initiative: The case of wood-fuelled district heating systems in Austria. Energy Policy 2007:35(3):1992-2008. doi:10.1016/j.enpol.2006.06.01010.1016/j.enpol.2006.06.010
  46. [46] Perednis E., Katinas V., Markevičius A. Assessment of wood fuel use for energy generation in Lithuania. Renewable and Sustainable Energy Reviews 2012:16(7):5391-5398. doi:10.1016/j.rser.2012.05.04410.1016/j.rser.2012.05.044
  47. [47] Ziemele J., Pakere I., Talcis N., Cimdiņa G., Vīgants Ģ., Veidenbergs I., Blumberga D. Analysis of wood fuel use development in Riga. Agronomy Research 2014:12(2):645-654.
  48. [48] Joelsson J., Gustavsson L. Swedish biomass strategies to reduce CO2 emission and oil use in an EU context. Energy 2012:43:448-468. doi:10.1016/j.energy.2012.03.05010.1016/j.energy.2012.03.050
  49. [49] Parajuli R. Looking into the Danish energy system: Lesson to be learned by other communities. Renewable and Sustainable Energy Reviews 2012:16:2191-2199. doi:10.1016/j.rser.2012.01.04510.1016/j.rser.2012.01.045
  50. [50] Voivontas D., Assimacopoulos D., Koukios E. G. Assessment of biomass potential for power production: a GIS based method. Biomass and Bioenergy 2001:20:101-112. doi:10.1016/S0961-9534(00)00070-210.1016/S0961-9534(00)00070-2
  51. [51] Van Dam J., Faaij A. P. C, Lewandowski I., Fischer G. Biomass production potentials in Central and Eastern Europe under different scenarios. Biomass and Bioenergy 2007:31:345-366. doi:10.1016/j.biombioe.2006.10.001 10.1016/j.biombioe.2006.10.001
  52. [52] Simon S. Wiegman K. Modelling sustainable bioenergy potentials from agriculture for Germany and Eastern European countries. Biomass and Bioenergy 2009:33:603-609. doi:10.1016/j.biombioe.2008.10.00110.1016/j.biombioe.2008.10.001
  53. [53] Havlickova K., Weger J., Knapek J. Modelling of biomass prices for bio-energy market in the Czech Republic. Simulation Modelling Practice and Theory 2011:19:1946-1956. doi:10.1016/j.simpat.2011.04.00210.1016/j.simpat.2011.04.002
  54. [54] De Wit M., Faai A. European biomass resource potential and costs. Biomass and Bioenergy 2010:34:188-202. doi:10.1016/j.biombioe.2009.07.01110.1016/j.biombioe.2009.07.011
  55. [55] Barisa A., Cimdina G., Romagnoli F., Blumberga D. Potential for bioenergy development in Latvia: future trend analysis. Agronomy Research 2013:11(2):275-282.
  56. [56] Cimdiņa G., Blumberga A., Veidenbergs I., Blumberga D., Barisa A. The Natural Gas Addiction and Wood Energy Role in Latvia Today and Future. Proceedings of the 2013 International Conference on Mechanics, Fluids, Heat, Elasticity and Electromagnetic Fields (MFHEEF 2013), 2013:147-152.
  57. [57] Lund H., Mathiesen B. V. Energy system analysis of 100 % renewable energy systems - The case of Denmark in years 2030 and 2050. Energy 2009:34:524-531. doi:10.1016/j.energy.2008.04.00310.1016/j.energy.2008.04.003
  58. [58] Henning H. M., Palzer A. A comprehensive model for the German electricity and heat sector in a future energy system with a dominant contribution from renewable energy Technologies - Part I: Methodology. Renewable and Sustainable Energy Reviews 2014:30:1019-1034. doi:10.1016/j.rser.2013.09.01210.1016/j.rser.2013.09.012
  59. [59] Ćosić B., Krajačić G., Duić N. A 100 % renewable energy system in the year 2050: The case of Macedonia. Energy 2012:48:80-87. doi:10.1016/j.energy.2012.06.07810.1016/j.energy.2012.06.078
  60. [60] Krajačić G., Duić N., Zmijarević Z., Mathiesen B. V, Vučinić A. A, da Graça Carvalho M. Planning for a 100 % independent energy system based on smart energy storage for integration of renewables and CO2 emissions reduction. Applied Thermal Engineering 2011:31:2073-2083. doi:10.1016/j.applthermaleng.2011.03.01410.1016/j.applthermaleng.2011.03.014
  61. [61] Connolly D., Lund H., Mathiesen B. V., Leahy M. The first step towards a 100 % renewable energy-system for Ireland. Applied Energy 2011:88:502-507. doi:10.1016/j.apenergy.2010.03.00610.1016/j.apenergy.2010.03.006
  62. [62] Østergaard P. A., Mathiesen B. V., Möllera B., Lund H. A renewable energy scenario for Aalborg Municipality based on low-temperature geothermal heat, wind power and biomass. Energy 2010:35:4892-4901. doi:10.1016/j.energy.2010.08.04110.1016/j.energy.2010.08.041
  63. [63] Østergaard P. A., Lund H. A renewable energy system in Frederikshavn using low-temperature geothermal energy for district heating. Applied Energy 2011:88:479-487. doi:10.1016/j.apenergy.2010.03.01810.1016/j.apenergy.2010.03.018
  64. [64] Steinke F., Wolfrum P., Hoffmann C. Grid vs. storage in a 100 % renewable Europe. Renewable Energy 2013:50: 826-832. doi:10.1016/j.renene.2012.07.04410.1016/j.renene.2012.07.044
  65. [65] Spiecker S., Weber Ch. The future of the European electricity system and the impact of fluctuating renewable energy - A scenario analysis. Energy Policy 2014:65:185-197. doi:10.1016/j.enpol.2013.10.03210.1016/j.enpol.2013.10.032
  66. [66] Rasmussen M. G., Andresen G. B., Greiner M. Storage and balancing synergies in a fully or highly renewable pan- European power system. Energy Policy 2012:51:642-651. doi:10.1016/j.enpol.2012.09.00910.1016/j.enpol.2012.09.009
  67. [67] Blumberga D., Cimdiņa G., Timma L., Blumberga A., Rošā M. Green energy strategy 2050 for Latvia: a pathway towards a low carbon society. Chemical Engineering Transactions 2014:39:1507-1512. doi:10.3303/CET1439252
  68. [68] Senge P. The Fifth Discipline. The Art and Practice of the Learning Organization, 1990.
DOI: https://doi.org/10.1515/rtuect-2015-0002 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 5 - 21
Published on: Feb 12, 2016
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2016 Ginta Cimdina, Lelde Timma, Ivars Veidenbergs, Dagnija Blumberga, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.