2. LAROSE, D. T., 2014. <em>Discovering knowledge in data: an introduction to data mining.</em> John Wiley & Sons.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1002/9781118874059" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/9781118874059</a></dgdoi:pub-id>
3. GRZYMALA-BUSSE, J. W. Handling missing attribute values. Data mining and knowledge discovery handbook. Second edition. Springer New York Dordrecht Heidelberg London. ISBN 978-0-387-09822-7
4. HERNÁNDEZ, M. A., STOLFO, S. J., 1998. Real-world data is dirty: Data cleansing and the merge/purge problem. <em>Data mining and knowledge discovery 2.1</em>, pp. 9-37.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1023/A:1009761603038" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1023/A:1009761603038</a></dgdoi:pub-id>
5. KIM, WON, et al., 2003. A taxonomy of dirty data. <em>Data mining and knowledge discovery 7.1</em>, pp. 81-99.<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1023/A:1021564703268" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1023/A:1021564703268</a></dgdoi:pub-id>