1. FRIEDMAN, J. H., 2016. <em>Data mining and statistics: What‘s the connection?</em> Stanford: Stanford University, CA 94305. [10.11.2016] available at: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://statweb.stanford.edu/~jhf/ftp/dm-stat.pdf">http://statweb.stanford.edu/~jhf/ftp/dm-stat.pdf</ext-link>
2. BABCOCK, B., DATAR, M., MOTWANI, R., O’CALLAGHAN, L., 2003. Maintaining variance and k-medians over data stream windows. In: <em>Proc. ACM Symp. on Principles of Database Systems.</em><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1145/773153.773176" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1145/773153.773176</a></dgdoi:pub-id>
6. FAYYAD, U. et al., 1996. <em>From Data Mining to Knowledge Discovery in Databases</em>. American Association for Artificial Intelligence, 0738-4602.
7. KOVALERCHUK, B., VITYAEV, E., 2000. Data Mining in Finance: Advances in Relational and Hybrid Methods. Springer Science & Business Media, 2000 edition, ISBN-10: 0792378040, ISBN-13: 978-0792378044