Have a personal or library account? Click to login
Preparation and Cluster Analysis of Data from the Industrial Production Process for Failure Prediction Cover

Preparation and Cluster Analysis of Data from the Industrial Production Process for Failure Prediction

Open Access
|Apr 2017

References

  1. 1. FRIEDMAN, J. H., 2016. <em>Data mining and statistics: What‘s the connection?</em> Stanford: Stanford University, CA 94305. [10.11.2016] available at: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://statweb.stanford.edu/~jhf/ftp/dm-stat.pdf">http://statweb.stanford.edu/~jhf/ftp/dm-stat.pdf</ext-link>
  2. 2. BABCOCK, B., DATAR, M., MOTWANI, R., O’CALLAGHAN, L., 2003. Maintaining variance and k-medians over data stream windows. In: <em>Proc. ACM Symp. on Principles of Database Systems.</em><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1145/773153.773176" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1145/773153.773176</a></dgdoi:pub-id>
  3. 3. DATTORRO, J., 2008. Equality relating Euclidean distance cone to positive semidefinite cone. Linear Algebra and its Applications, 428, 2597–2600. [10.11.2016] available at: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://ccrma.stanford.edu/~dattorro/EDM.pdf">https://ccrma.stanford.edu/~dattorro/EDM.pdf</ext-link><dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1016/j.laa.2007.12.008" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.laa.2007.12.008</a></dgdoi:pub-id>
  4. 4. NAZARI, Z., et all., 2015. A New Hierarchical Clustering Algorithm. In: <em>ICIIBMS 2015, Track2: Artificial Intelligence, Robotics, and Human-Computer Interaction</em>. Okinawa, Japan [10.11.2016].<dgdoi:pub-id xmlns:dgdoi="http://degruyter.com/resources/doi-from-crossref" pub-id-type="doi"><a href="https://doi.org/10.1109/ICIIBMS.2015.7439517" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/ICIIBMS.2015.7439517</a></dgdoi:pub-id>
  5. 5. ALPYDIN, E., 2010. <em>Introduction to Machine Learning</em>. The MIT Press, pp. 143-158.
  6. 6. FAYYAD, U. et al., 1996. <em>From Data Mining to Knowledge Discovery in Databases</em>. American Association for Artificial Intelligence, 0738-4602.
  7. 7. KOVALERCHUK, B., VITYAEV, E., 2000. Data Mining in Finance: Advances in Relational and Hybrid Methods. Springer Science &amp; Business Media, 2000 edition, ISBN-10: 0792378040, ISBN-13: 978-0792378044
Language: English
Page range: 111 - 116
Published on: Apr 4, 2017
Published by: Slovak University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2017 Martin Németh, German Michaľčonok, published by Slovak University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.