Angiulli, F., & Pizzuti, C. (2002). Fast Outlier Detection in High Dimensional Spaces, In: Elomaa T., Mannila H., Toivonen H. (eds) Principles of Data Mining and Knowledge Discovery. PKDD 2002. Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence), vol. 2431. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45681-3_210.1007/3-540-45681-3_2
Baldominos, A., Blanco, I., Moreno, A. J., Iturrarte, R., Bernárdez, Ó., & Afonso, C. (2018). Identifying Real Estate Opportunities Using Machine Learning. Applied Sciences (Basel, Switzerland), 8(11), 2321. https://doi.org/10.3390/app811232110.3390/app8112321
Batóg, B., & Foryś, I. (2011). Logit models in the analysis of transactions on the Warsaw residential market in Polish: Modele logitowe w analizie transakcji na warszawskim rynku mieszkaniowym. Studia i Materiały Towarzystwa Naukowego Nieruchomości, 19(3), 33–48.
Etel, L., & Dowgier, R. (2013). Local taxes and charges – time for a change in Polish: Podatki i opłaty lokalne – czas na zmiany, Białystok. Temida : Casopis o Viktimizaciji, Ljudskim Pravima i Rodu, 2.
Głuszak, M., & Marona, B. (2015). Cadastral tax. Economic conditions of the property taxation reform in Polish Podatek katastralny. Ekonomiczne uwarunkowania reformy opodatkowania nieruchomości. Poltext.
Gnat, S. (2009). Analysis of the effects of replacing current property tax with ad valorem property tax in a sample municipality. Folia Oeconomica Stetinensia, 8(16), 82-98.10.2478/v10031-009-0022-6
Gnat, S. (2010). Use of operational research methods in modelling the impact of cadastral tax on the financial situation of the municipality in Polish: Wykorzystanie metod badań operacyjnych w modelowaniu wpływu podatku katastralnego na sytuację finansową gminy. Doctoral Dissertation, Univesrity of Szczecin, Szczecin.
Kontrimas, V., & Verikas, A. (2006). Tracking of doubtful real estate transaction by outlier detection methods: A comparative study. Information Technology and Control, 35(2), 94–105.
Morano, P., De Mare, G., & Tajani, F. (2013). LMS for Outliers Detection in the Analysis of a Real Estate Segment of Bari. In B. Murgante, . . . (Eds.), Lecture Notes in Computer Science: Vol. 7974. Computational Science and Its Applications – ICCSA 2013. ICCSA 2013. Springer. https://doi.org/10.1007/978-3-642-39649-6_3310.1007/978-3-642-39649-6_33
Ng, K. H., & Khor, K. (2016). Rapid identification of outstanding real estate investment trusts with outlier detection algorithms. Journal of Theoretical and Applied Information Technology, 88(2), 321–330.
Prastawa, M., Bullitt, E., Ho, S., & Gerig, G. (2004). A brain tumor segmentation framework based on outlier detection. Medical Image Analysis, 8(3), 275–283. https://doi.org/10.1016/j.media.2004.06.007 PMID:1545022210.1016/j.media.2004.06.007
Raschka, S. (2018). MLxtend: Providing machine learning and data science utilities and extensions to Python’s scientific computing stack. Journal of Open Source Software, 3(24), 638. https://doi.org/10.21105/joss.0063810.21105/joss.00638
Śpiewak, B. (2018). Application of Chosen Methods of Robust Estimation: Baarda’s and Huber’s in Search for Outliers in the Real Estate Market Modeling. Folia Oeconomica Stetinensia, 18(1), 27–38. https://doi.org/10.2478/foli-2018-000310.2478/foli-2018-0003
Wójtowicz, K. (2006). Analysis of potential effects of real estate tax system reform in Poland in Polish: Analiza potencjalnych skutków reformy systemu opodatkowania nieruchomości w Polsce. Finanse Publiczne. UMCS.