Have a personal or library account? Click to login
Model Hybrid for Sales Forecast for the Housing Market of São Paulo Cover

Model Hybrid for Sales Forecast for the Housing Market of São Paulo

Open Access
|Aug 2020

References

  1. ABECIP. Crédito imobiliário com recursos da poupança cresceu 3,4% em 2014. (2015). https://www.abecip.org.br/imprensa/abecip-na-midia/credito-imobiliario-com-recursos-dapoupanca-cresceu-3-4-em-2014. Acessed 15 jan. 2019.
  2. Anghel, I., & Hristea, M. (2015). Some considerations regarding the international real estate market – present and future predications. Procedia Economics and Finance, 32, 1442–1452. Advance online publication. https://doi.org/10.1016/S2212-5671(15)01520-810.1016/S2212-5671(15)01520-8
  3. Baghestani, H. (2017). Do consumers’ home buying attitudes explain the behaviour of US home sales? Applied Economics Letters, 24, 779–783. Advance online publication. https://doi.org/10.1080/13504851.2016.122940110.1080/13504851.2016.1229401
  4. Ball, M., & Nanda, A. (2013). Household attributes and the future demand for retirement housing. International Journal of Housing Markets and Analysis, 6(1). https://doi.org/10.1108/1753827131130600210.1108/17538271311306002
  5. Ballou, R. (2006). Gerenciamento da cadeia de suprimentos/Logística empresarial (5th ed.). Bookman.
  6. Baltrusis, N., & Mourad, L. N. (2014). Política habitacional e locação social em Salvador. Caderno CRH, 27(71), 267–284. https://doi.org/10.1590/S0103-4979201400020000410.1590/S0103-49792014000200004
  7. Box, G., Jenkins, G., & Reinsel, G. (2008). Time series analysis – forecasting and control (4th ed.). Prentice Hall.
  8. Bratu, M. (2012). The reduction of uncertainty in making decisions by evaluating the macroeconomic forecasts performance in Romania. Economic Research Journal, 25, 239–262. Advance online publication. https://doi.org/10.1080/1331677X.2012.1151750610.1080/1331677X.2012.11517506
  9. Chen, L. H. (2010). Using Financial and Macroeconomic Indicators to Forecast Sales of Large Development and Construction Firms. The Journal of Real Estate Finance and Economics, 40, 310–331. Advance online publication. https://doi.org/10.1007/s11146-008-9158-710.1007/s11146-008-9158-7
  10. Csesko, M., & Reed, R. (2009). Will residential aged care facilities meet long-term demand? Property Management, 27(1). https://doi.org/10.1108/0263747091093267410.1108/02637470910932674
  11. Dua, P., & Miller, S. M. (1996). Forecasting Connecticut home sales in a BVAR framework using coincident and leading indexes. The Journal of Real Estate Finance and Economics, 13. Advance online publication. https://doi.org/10.1007/BF0021739210.1007/BF00217392
  12. Dua, P., Miller, S. M., & Smyth, D. J. (1999). Using Leading Indicators to Forecast U.S. Home Sales in a Bayesian Vector Autoregressive Framework. The Journal of Real Estate Finance and Economics, 18, 191–205. Advance online publication. https://doi.org/10.1023/A:100771872560910.1023/A:1007718725609
  13. Dickey, D., & Fuller, W. Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association. Advance online publication. https://doi.org/10.2307/228634810.2307/2286348
  14. EMBRAESP. (2013). Crise estrutural no setor imobiliário ou aonde que se ergueu no mar. https://incorporacaoimobiliaria.com/tag/embraesp/. Acessed 26 dec 2016.
  15. Gibler, K. M., & Sherwood Clements, J., III. (2011). Testing a forecast model to predict movement of older Americans into retirement housing. International Journal of Housing Markets and Analysis, 4(1). https://doi.org/10.1108/1753827111111181110.1108/17538271111111811
  16. Gibler, K. M., Talvavull, P., Casado-Díaz, J. M., & Rodriguez, V. (2009). Examining retirement housing preferences among international retiree migrants. International Real Estate Review, 12(1), 1–22.10.53383/100102
  17. Granger, C. W., & Ramanathan, R. (1984). Improved methods of combining forecasts. Journal of Forecasting, 3, 197–204. Advance online publication. https://doi.org/10.1002/for.398003020710.1002/for.3980030207
  18. Gupta, R., Lau, C. K.M., Plakandaras, V., & Wong, W. (2019). The role of housing sentiment in forecasting U.S. home sales growth: evidence from a Bayesian compressed vector autoregressive model. Economic Research-Ekonomska Istraživanja, 32(1). https://doi.org/10.1080/1331677X.2019.165065710.1080/1331677X.2019.1650657
  19. Hassani, H., Ghodsi, Z., Gupta, R., & Segnon, M. (2017). Forecasting Home Sales in the Four Census Regions and the Aggregate US Economy Using Singular Spectrum Analysis. Computational Economics, 49, 83–97. Advance online publication. https://doi.org/10.1007/s10614-015-9548-x10.1007/s10614-015-9548-x
  20. Huang, Y., Wang, Y., & Gai, S. (2011). The application and research of a new combinatorial analysis and forecasting method in real estate area based on Grey System Theory and Multivariate Linear Regression. Procedia Engineering, 15, 4532–4537. Advance online publication. https://doi.org/10.1016/j.proeng.2011.08.85110.1016/j.proeng.2011.08.851
  21. Hyndman, R. J., Koehler, A. B., Snyder, R. D., & Grose, S. (2002). A state space framework for automatic forecasting using exponential smoothing methods. International Journal of Forecasting, 18, 439–454. Advance online publication. https://doi.org/10.1016/S0169-2070(01)00110-810.1016/S0169-2070(01)00110-8
  22. Hyung, C. J., & Jung, J. U. (2013). Simulation Model on Long-Term Housing Demand Forecasting for the Utilization of Real Estate Knowledge. Journal of CEO and Management Studies, 16, 119–139.
  23. IBGE. (2014). Pesquisa anual dos serviços. http://ibge.gov.br/home/estatistica/economia/comercioeservico/pas/analisepas99.shtm. Acessed 02 dec. 2018.
  24. IBGE. (2016). Série histórica IPCA. http://www.ibge.gov.br/home/estatistica/indicadores/precos/inpc_ipca/ipcainpc_201601_1.shtm. Acessed 27 jan. 2019.
  25. ISTOÉ. Mercado imobiliário fecha 2018 com alta de 19,2% em vendas, diz CBIC. (2019). https://istoe.com.br/mercado-imobiliario-fecha-2018-com-alta-de-192-em-vendas-diz-cbic/. Acessed 02 jan. 2020. JAFARI, A., AKHAVIAN, R. Driving forces for the US residential housing price: a predictive analysis. Built Environment Project and Asset Management. Article In Press.
  26. Khashei, M., & Bijari, M. (2010). An artificial neural network (p,d,q) model for time series forecasting. Expert Systems with Applications, 37, 479–489. Advance online publication. https://doi.org/10.1016/j.eswa.2009.05.04410.1016/j.eswa.2009.05.044
  27. Kwiatkowski, D., Phillips, P. C., Schmidt, P., & Shin, Y. Testing the null hypothesis of stationarity against the alternative of a unit root. How sure are we that economic time series have a unit root? Journal of Econometrics. Advance online publication. https://doi.org/10.1016/0304-4076(92)90104-Y10.1016/0304-4076(92)90104-Y
  28. Liu, L., & Li, W. (2009). Research on the forecast of Real Estate market demand in Beijing. Paper presentation at International Conference on Construction & Real Estate Management, Beijing, China.
  29. Mendonça, M. J., Medrano, L. A., & Sachsida, A. (2011). Avaliando o efeito de um choque de política monetária sobre o mercado imobiliário. Texto para Discussão IPEA, 1631, 1–31.
  30. Mendonça, M. J., & Sachsida, A. (2012). Existe bolha no mercado imobiliário brasileiro? Textos para Discussão IPEA., 1762, 1–66.
  31. Mendonça, M. J. (2013). O crédito imobiliário no Brasil e sua relação com a Política Monetária. Revista brasileira de Economia 67(4). https://doi.org/10.1590/S0034-7140201300040000510.1590/S0034-71402013000400005
  32. Moro, M. F., Reis, C. C. C., Flores, S., Weise, A., & Vincenzi, S. (2016a). São Paulo Real Estate Market: Interference of economic indicators in sales of residential Real Estates. International Journal of Real Estate Studies, 10(2).
  33. Moro, M., de Almeida Flores, S., dos Reis, C. C. C., Weise, A. D., & Vincenzi, S. L. (2016b). Previsão de vendas: uma adequação da metodologia ARIMA para o mercado imobiliário de São Paulo. Paper presentation at the Conferência Internacional da Latin American Real Estate Society, São Paulo, Brazil. https://doi.org/10.15396/lares-16-moro_previsao_artigo10.15396/lares-16-moro_previsao_artigo
  34. Ord, K., Koehler, A., & Snyder, R. (1997). Estimation and Prediction for a Class of Dynamic Nonlinear Statistical Models. Journal of the American Statistical Association, 92, 1621–1629. Advance online publication. https://doi.org/10.1080/01621459.1997.1047368410.1080/01621459.1997.10473684
  35. Patton, A., & Sheppard, K. (2009). Optimal combinations of realised volatility estimators. International Journal of Forecasting, 25, 218–238. Advance online publication. https://doi.org/10.1016/j.ijforecast.2009.01.01110.1016/j.ijforecast.2009.01.011
  36. SECOVI-SP. (2015). Na contramão do mercado imobiliário, VCG cresce 155% em 2014. https://incorporacaoimobiliaria.com/tag/mercado-imobiliario/. Acessed 25 jan. 2019.
  37. SECOVI-SP. (2016). Série histórica com a evolução do IVV e do número de unidades ofertadas, vendidas e lançadas em São Paulo. http://www.secovi.com.br/pesquisas-e-indices/pesquisamensal-do-mercado-imobiliario. Acessed 15 jan 2017.
  38. Sehgal, S., & Agarwal, M. (2018). Analogous Examination of Various Machine Learning Algorithm Applied to Big Data. Paper presentation at the International Conference on Advances in Computing, Communication Control and Networking (ICACCCN), Greater Noida, India. https://doi.org/10.1109/ICACCCN.2018.874885510.1109/ICACCCN.2018.8748855
  39. Shimbo, L. (2013). O aquecimento imobiliário e o mercado de habitação na área central de São Paulo (2001-2010). Revista Latinoamericana de Estudios Urbanos e Regionales., https://doi.org/10.4067/S0250-7161201300020001010.4067/S0250-71612013000200010
  40. Skittides, C., & Fruh, W. (2014). Wind forecasting using Principal Component Analysis. Renewable Energy, 69, 365–374. Advance online publication. https://doi.org/10.1016/j.renene.2014.03.06810.1016/j.renene.2014.03.068
  41. Stock, J., & Watson, M. (2004). Combination forecasts of output growth in a seven-country data set. Journal of Forecasting, 23, 405–430. Advance online publication. https://doi.org/10.1002/for.92810.1002/for.928
  42. Temür, S. A., Akgün, M., & Temür, G. (2019). Predicting housing sales in turkey using arima, lstm and hybrid models. Journal of Business Economics and Management, 20, 920–938. Advance online publication. https://doi.org/10.3846/jbem.2019.1019010.3846/jbem.2019.10190
  43. UNITED NATIONS. (2014). World’s population increasingly urban with more than half living in urban areas. http://www.un.org/en/development/desa/news/population/world-urbanizationprospects2014.html?utm_term=United+Nations,+DESA,+Social,+Economic&utm_content=DESA+assists+countries+in+agendasetting+and+decisionmaking+with+the+goal+of+meeting+their+economic,+social+and+environmental+challenges.&utm_source=twitterfeed&utm_medium=twitte. Acessed 18 mar 2019.
  44. Valle dos Santos, R. O., & Vellasco, M. M. (2015). Neural Expert Weighting: A NEW framework for dynamic forecast combination. Expert Systems with Applications, 42, 8625–8636. Advance online publication. https://doi.org/10.1016/j.eswa.2015.07.01710.1016/j.eswa.2015.07.017
  45. Varandas Júnior, J., Alencar, C. (2009). Modelos de projeção de demanda aplicado ao mercado imobiliário. Paper presentation at Conferência Internacional da Latin American Real Estate Society, São Paulo, Brazil.
  46. Wang, L., Wang, Z., Qu, H., & Liu, S. (2018). Optimal Forecast Combination Based on Neural Networks for Time Series Forecasting. Applied Soft Computing, 66, 1–17. Advance online publication. https://doi.org/10.1016/j.asoc.2018.02.00410.1016/j.asoc.2018.02.004
Language: English
Page range: 45 - 64
Published on: Aug 17, 2020
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Matheus Fernando Moro, Andreas Dittmar Weise, Antonio Cezar Bornia, published by Real Estate Management and Valuation
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.