References
- Čiburienė, J., & Jegelavičiūtė, R. (2017). Data Sharing-Way to Improve Real Estate Valuation Quality: Lithuanian Case. Social & Economic Revue, 15(2).
- Chiarazzo, V., Caggiani, L., Marinelli, M., & Ottomanelli, M. (2014). A neural network based model for real estate price estimation considering environmental quality of property location. Transportation Research Procedia, 3(July), 810–817. https://doi.org/10.1016/j.trpro.2014.10.06710.1016/j.trpro.2014.10.067
- D’Acci, L. (2019). Quality of urban area, distance from city centre, and housing value. Case study on real estate values in Turin. Cities, 91(November 2018), 71–92. doi:10.1016/j.cities.2018.11.00810.1016/j.cities.2018.11.008
- De Cock, D. (2011). Ames, Iowa: Alternative to the boston housing data as an end of semester regression project. Journal of Statistics Education : An International Journal on the Teaching and Learning of Statistics, 19(3). Advance online publication. https://doi.org/10.1080/10691898.2011.1188962710.1080/10691898.2011.11889627
- Del Giudice, V., De Paola, P., & Cantisani, G. B. (2017). Valuation of real estate investments through Fuzzy Logic. Buildings, 7(4), 26. Advance online publication. https://doi.org/10.3390/buildings701002610.3390/buildings7010026
- Du, Q., Wu, C., Ye, X., Ren, F., & Lin, Y. (2018). Evaluating the effects of landscape on housing prices in urban China. Tijdschrift voor Economische en Sociale Geografie, 109(4), 525–541. https://doi.org/10.1111/tesg.1230810.1111/tesg.12308
- Dziadosz, A., & Meszek, W. (2015). Selected Aspects of Determining of Building Facility Deterioration for Real Estate Valuation. Procedia Engineering, 122(Orsdce), 266–273. doi:10.1016/j.proeng.2015.10.03510.1016/j.proeng.2015.10.035
- Hoesli, M., Jani, E., & Bender, A. (2006). Monte Carlo simulations for real estate valuation. Journal of Property Investment & Finance, 24(2), 102–122. https://doi.org/10.1108/1463578061065507610.1108/14635780610655076
- Hromada, E. (2016). Real Estate Valuation Using Data Mining Software. Procedia Engineering, 164(June), 284–291. https://doi.org/10.1016/j.proeng.2016.11.62110.1016/j.proeng.2016.11.621
- Yeh, I. C., & Hsu, T. K. (2018). Building real estate valuation models with comparative approach through case-based reasoning. Applied Soft Computing, 65, 260–271. https://doi.org/10.1016/j.asoc.2018.01.02910.1016/j.asoc.2018.01.029
- International Association of Assessing Officers. (2011). Standard on Mass Appraisal of Real Property, (January), 3–14.
- Jegelavičiūtė, R., & Rimkevičiūtė, R. (2017). Correction coefficient of comparative method influence to real estate value. Adjustment coeficient influence to residential real estate, 2(2), 1–39.
- Li Yu, Chen Li Jiao, Hongrun Xin, Yan Wang, K. W. (2018). Prediction on Housing Price Based on Deep Learning. World Academy of Science. Engineering and Technology International Journal of Computer and Information Engineering, 12(2), 10. 10.1016/j.ajpath.2011.02.029
- Statistics, L. (2019). Macroeconomic indicators of Lithuania by municipality. Retrieved from https://www.stat.gov.lt/en
- Navickas, V., Šaudys, A., & Jegelavičiūtė, R. (2017). Comparative approach application in value assessment of land areas in Lithuania. Journal of Management, 1, 30.
- Registry center. (2018). Real estate historical transaction data for 2008 - 2018 period, which were obtained from R&D contract no. SV9-2070.
- TEGOVA. (2016). Europos vertinimo standartai.
- TEGoVA. (2018). Automated Valuation Models (AVMs), 1–6. Retrieved from http://www.tegova.org/data/bin/a591190c05b2c3_Geoge_Matysiak_Valuation_Report.pdf
- Tumelionis, A. (2013). Lyginamojo metodo pataisų apskaičiavimo aktualijos, 38–54.
- TVST. (2017). Tarptautinis vertinimo standartas, 1–107.
- Zujo, V., Car-Pusic, D., & Zileska-Pancovska, V. (2014). Cost and Experience based Real Estate Estimation Model. Procedia: Social and Behavioral Sciences, 119, 672–681. https://doi.org/10.1016/j.sbspro.2014.03.07510.1016/j.sbspro.2014.03.075