References
- Cheng, D, Reiner, DM, Yang, F, Cui, C, Meng, J, Shan, Y, et al.. Projecting future carbon emissions from cement production in developing countries. Nat Commun 2023;14:8213. https://doi.org/10.1038/s41467-023-43660-x.
- Shivaprasad, KN, Yang, H-M, Singh, JK. A path to carbon neutrality in construction: an overview of recent progress in recycled cement usage. J CO2 Util 2024;83:102816. https://doi.org/10.1016/j.jcou.2024.102816.
- Khan, K, Ahmad, W, Amin, MN, Rafiq, MI, Abu Arab, AM, Alabdullah, IA, et al.. Evaluating the effectiveness of waste glass powder for the compressive strength improvement of cement mortar using experimental and machine learning methods. Heliyon 2023;9:e16288. https://doi.org/10.1016/j.heliyon.2023.e16288.
- Wu, S, Shao, Z, Andrew, RM, Bing, L, Wang, J, Niu, L, et al.. Global CO2 uptake by cement materials accounts 1930–2023. Sci Data 2024;11:1409. https://doi.org/10.1038/s41597-024-04234-8.
- Bouchelil, L, Shah Bukhari, SJ, Khanzadeh Moradllo, M. Evaluating the performance of internally cured limestone calcined clay concrete mixtures. J Sustain Cement-Based Mater 2025;14:198–208. https://doi.org/10.1080/21650373.2024.2432002.
- Bukhari, SJS, Khanzadeh Moradllo, M. Multicriteria performance assessment of ‘low w/c + low cement + high dosage admixture’ concrete: environmental, economic, durability, and mechanical performance considerations. J Clean Prod 2025;523:146419. https://doi.org/10.1016/j.jclepro.2025.146419.
- Fahim, AA, Bukhari, SJS, Khanzadeh Moradllo, M. Additive manufacturing of carbonatable ternary cementitious systems with cellulose nanocrystals. Constr Build Mater 2025;495:143753. https://doi.org/10.1016/j.conbuildmat.2025.143753.
- Ahmad, W, McCormack, SJ, Byrne, A. Biocomposites for sustainable construction: a review of material properties, applications, research gaps, and contribution to circular economy. J Build Eng 2025;105:112525. https://doi.org/10.1016/j.jobe.2025.112525.
- Gupta, S, Chaudhary, S. State of the art review on supplementary cementitious materials in India–II: characteristics of SCMs, effect on concrete and environmental impact. J Clean Prod 2022;357:131945. https://doi.org/10.1016/j.jclepro.2022.131945.
- Hu, J, Ahmed, W, Jiao, D. A critical review of the technical characteristics of recycled brick powder and its influence on concrete properties. Buildings 2024;14:3691. https://doi.org/10.3390/buildings14113691.
- Ahmed, W, Ye, C, Lu, G, Ng, ST, Liu, G, Wang, Y. Low-carbon concrete comprising high-volume pozzolan and recycled aggregate: evaluating mechanical performance, microstructure, environmental impact, and cost efficiency. J Clean Prod 2025;518:145796. https://doi.org/10.1016/j.jclepro.2025.145796.
- Ndahirwa, D, Zmamou, H, Lenormand, H, Leblanc, N. The role of supplementary cementitious materials in hydration, durability and shrinkage of cement-based materials, their environmental and economic benefits: a review. Clean Mater 2022;5:100123. https://doi.org/10.1016/j.clema.2022.100123.
- Park, S, Wu, S, Liu, Z, Pyo, S. The role of supplementary cementitious materials (SCMs) in ultra high performance concrete (UHPC): a review. Materials 2021;14:1472. https://doi.org/10.3390/ma14061472.
- Ahmed, MM, Sadoon, A, Bassuoni, MT, Ghazy, A. Utilizing agricultural residues from hot and cold climates as sustainable SCMs for low-carbon concrete. Sustainability 2024;16:10715. https://doi.org/10.3390/su162310715.
- Mohamad, N, Muthusamy, K, Embong, R, Kusbiantoro, A, Hashim, MH. Environmental impact of cement production and solutions: a review., vol 48; 2022. p. 741–6. https://doi.org/10.1016/j.matpr.2021.02.212.Mater Today Proc.
- Barbhuiya, S, Kanavaris, F, Das, BB, Idrees, M. Decarbonising cement and concrete production: strategies, challenges and pathways for sustainable development. J Build Eng 2024;86:108861. https://doi.org/10.1016/j.jobe.2024.108861.
- Scrivener, KL, John, VM, Gartner, EM. Eco-efficient cements: potential economically viable solutions for a low-CO2 cement-based materials industry. Cement Concr Res 2018;114:2–26. https://doi.org/10.1016/j.cemconres.2018.03.015.
- Miller, SA, Horvath, A, Monteiro, PJM. Impacts of booming concrete production on water resources worldwide. Nat Sustain 2018;1:69–76. https://doi.org/10.1038/s41893-017-0009-5.
- Jamil, M, Zhao, W, He, N, Gupta, MK, Sarikaya, M, Khan, AM, et al.. Sustainable milling of Ti–6Al–4V: a trade-off between energy efficiency, carbon emissions and machining characteristics under MQL and cryogenic environment. J Clean Prod 2021;281:125374. https://doi.org/10.1016/j.jclepro.2020.125374.
- Terán-Cuadrado, G, Tahir, F, Nurdiawati, A, Almarshoud, MA, Al-Ghamdi, SG. Current and potential materials for the low-carbon cement production: life cycle assessment perspective. J Build Eng 2024;96:110528. https://doi.org/10.1016/j.jobe.2024.110528.
- Orozco, C, Babel, S, Tangtermsirikul, S, Sugiyama, T. Comparison of environmental impacts of fly ash and slag as cement replacement materials for mass concrete and the impact of transportation. Sustain Mater Technol 2024;39:e00796. https://doi.org/10.1016/j.susmat.2023.e00796.
- Ahmad, J, Kontoleon, KJ, Majdi, A, Naqash, MT, Deifalla, AF, Ben Kahla, N, et al.. A comprehensive review on the ground granulated blast furnace slag (GGBS) in concrete production. Sustainability 2022;14:8783. https://doi.org/10.3390/su14148783.
- Zhao, Q, Pang, L, Wang, D. Adverse effects of using metallurgical slags as supplementary cementitious materials and aggregate: a review. Materials 2022;15:3803. https://doi.org/10.3390/ma15113803.
- Rattanadecho, P, Makul, N, Pichaicherd, A, Chanamai, P, Rungroungdouyboon, B. A novel rapid microwave-thermal process for accelerated curing of concrete: prototype design, optimal process and experimental investigations. Constr Build Mater 2016;123:768–84. https://doi.org/10.1016/j.conbuildmat.2016.07.084.
- Shi, C, Jiménez, AF, Palomo, A. New cements for the 21st century: the pursuit of an alternative to Portland cement. Cement Concr Res 2011;41:750–63. https://doi.org/10.1016/j.cemconres.2011.03.016.
- Meng, T, Yu, Y, Qian, X, Zhan, S, Qian, K. Effect of nano-TiO2 on the mechanical properties of cement mortar. Constr Build Mater 2012;29:241–5. https://doi.org/10.1016/j.conbuildmat.2011.10.047.
- Meddah, MS, Zitouni, S, Belâabes, S. Effect of content and particle size distribution of coarse aggregate on the compressive strength of concrete. Constr Build Mater 2010;24:505–12. https://doi.org/10.1016/j.conbuildmat.2009.10.009.
- Zhang, Y, Tang, Z, Liu, X, Zhou, X, He, W, Zhou, X. Study on the resistance of concrete to high-concentration sulfate attack: a case study in jinyan bridge. Materials 2024;17:3388. https://doi.org/10.3390/ma17143388.
- Shi, C, Qian, J. High performance cementing materials from industrial Slags—a review. Resour Conserv Recycl 2000;29:195–207. https://doi.org/10.1016/s0921-3449(99)00060-9.
- Engida, TG, Rao, X, Berentsen, PBM, Oude Lansink, AGJM. Measuring corporate sustainability performance– the case of European food and beverage companies. J Clean Prod 2018;195:734–43. https://doi.org/10.1016/j.jclepro.2018.05.095.
- Habert, G, Miller, SA, John, VM, Provis, JL, Favier, A, Horvath, A, et al.. Environmental impacts and decarbonization strategies in the cement and concrete industries. Nat Rev Earth Environ 2020;1:559–73. https://doi.org/10.1038/s43017-020-0093-3.
- Bernal, SA, Provis, JL. Durability of alkali‐activated materials: progress and perspectives. J Am Ceram Soc 2014;97:997–1008. https://doi.org/10.1111/jace.12831.
- Thomas, BS, Gupta, RC. A comprehensive review on the applications of waste tire rubber in cement concrete. Renew Sustain Energy Rev 2016;54:1323–33. https://doi.org/10.1016/j.rser.2015.10.092.
- Turner, LK, Collins, FG. Carbon dioxide equivalent (CO2-e) emissions: a comparison between geopolymer and OPC cement concrete. Constr Build Mater 2013;43:125–30. https://doi.org/10.1016/j.conbuildmat.2013.01.023.
- Lawrence, A, Nehler, T, Andersson, E, Karlsson, M, Thollander, P. Drivers, barriers and success factors for energy management in the Swedish pulp and paper industry. J Clean Prod 2019;223:67–82. https://doi.org/10.1016/j.jclepro.2019.03.143.
- Xu, J, Jiang, L, Wang, J. Influence of detection methods on chloride threshold value for the corrosion of steel reinforcement. Constr Build Mater 2009;23:1902–8. https://doi.org/10.1016/j.conbuildmat.2008.09.011.
- Pourjavadi, A, Fakoorpoor, SM, Hosseini, P, Khaloo, A. Interactions between superabsorbent polymers and cement-based composites incorporating colloidal silica nanoparticles. Cement Concr Compos 2013;37:196–204. https://doi.org/10.1016/j.cemconcomp.2012.10.005.
- He, Z-h., Li, L-y., Du, S-g. Creep analysis of concrete containing rice husk ash. Cement Concr Compos 2017;80:190–9. https://doi.org/10.1016/j.cemconcomp.2017.03.014.
- Xu, S, Wang, W, Dong, S, Li, Q, Liu, X, Peng, Y. Thermal stability study of fiber-reinforced cementitious composites with high ductility under high-temperature casting. Constr Build Mater 2021;282:122700. https://doi.org/10.1016/j.conbuildmat.2021.122700.
- Anand, P, Singh, SD, Bhowmik, PN, Kontoni, D-PN. Optimizing concrete mix proportions with zeolite, GGBS, and CDW: a data-driven approach integrating experimental analysis and machine learning models. Eng Res Express 2025;7:015105. https://doi.org/10.1088/2631-8695/ada51c.
- Dash, PK, Parhi, SK, Patro, SK, Panigrahi, R. Efficient machine learning algorithm with enhanced cat swarm optimization for prediction of compressive strength of GGBS-based geopolymer concrete at elevated temperature. Constr Build Mater 2023;400:132814. https://doi.org/10.1016/j.conbuildmat.2023.132814.
- Valenza, JJ, Thomas, JJ. Permeability and elastic modulus of cement paste as a function of curing temperature. Cement Concr Res 2012;42:440–6. https://doi.org/10.1016/j.cemconres.2011.11.012.
- Ahmad, W, Veeraghantla, VSSCS, Byrne, A. Advancing sustainable concrete using biochar: experimental and modelling Study for mechanical strength evaluation. Sustainability 2025;17:2516. https://doi.org/10.3390/su17062516.
- Poon, CS, Ho, DWS. A feasibility study on the utilization of r-FA in SCC. Cement Concr Res 2004;34:2337–9. https://doi.org/10.1016/j.cemconres.2004.02.013.
- Yang, K, Yang, C, Zhu, X. High volume ground granulated blast-furnace slag cement, high-volume mineral admixtures in cementitious binders. Cambridge, UK: Elsevier; 2025:1–29 pp.
- Sezavar, R, Shafabakhsh, G, Mirabdolazimi, SM. New model of moisture susceptibility of nano silica-modified asphalt concrete using GMDH algorithm. Constr Build Mater 2019;211:528–38. https://doi.org/10.1016/j.conbuildmat.2019.03.114.
- Chou, J-S, Pham, A-D. Enhanced artificial intelligence for ensemble approach to predicting high performance concrete compressive strength. Constr Build Mater 2013;49:554–63. https://doi.org/10.1016/j.conbuildmat.2013.08.078.
- Yeh, IC. Modeling of strength of high-performance concrete using artificial neural networks. Cement Concr Res 1998;28:1797–808. https://doi.org/10.1016/s0008-8846(98)00165-3.
- Yang, H, Bai, L, Duan, Y, Xie, H, Wang, X, Zhang, R, et al.. Upcycling corn straw into nanocelluloses via enzyme-assisted homogenization: application as building blocks for high-performance films. J Clean Prod 2023;390:136215. https://doi.org/10.1016/j.jclepro.2023.136215.
- Asteris, PG, Skentou, AD, Bardhan, A, Samui, P, Pilakoutas, K. Predicting concrete compressive strength using hybrid ensembling of surrogate machine learning models. Cement Concr Res 2021;145:106449. https://doi.org/10.1016/j.cemconres.2021.106449.
- Mansouri, E, Manfredi, M, Hu, J-W. Environmentally friendly concrete compressive strength prediction using hybrid machine learning. Sustainability 2022;14:12990. https://doi.org/10.3390/su142012990.
- Farooq, F, Ahmed, W, Akbar, A, Aslam, F, Alyousef, R. Predictive modeling for sustainable high-performance concrete from industrial wastes: a comparison and optimization of models using ensemble learners. J Clean Prod 2021;292:126032. https://doi.org/10.1016/j.jclepro.2021.126032.
- Cook, R, Lapeyre, J, Ma, H, Kumar, A. Prediction of compressive strength of concrete: critical comparison of performance of a hybrid machine learning model with standalone models. J Mater Civ Eng 2019;31:04019255. https://doi.org/10.1061/(asce)mt.1943-5533.0002902.
- Kashem, A, Karim, R, Das, P, Datta, SD, Alharthai, M. Compressive strength prediction of sustainable concrete incorporating rice husk ash (RHA) using hybrid machine learning algorithms and parametric analyses. Case Stud Constr Mater 2024;20:e03030. https://doi.org/10.1016/j.cscm.2024.e03030.
- Hameed, MM, Abed, MA, Al-Ansari, N, Alomar, MK. Predicting compressive strength of concrete containing industrial waste materials: novel and hybrid machine learning model. Adv Civ Eng 2022;2022:5586737. https://doi.org/10.1155/2022/5586737.
- Joshi, DA, Menon, R, Jain, RK, Kulkarni, AV. Deep learning based concrete compressive strength prediction model with hybrid meta-heuristic approach. Expert Syst Appl 2023;233:120925. https://doi.org/10.1016/j.eswa.2023.120925.
- Ly, H-B, Nguyen, T-A, Pham, BT, Nguyen, MH. A hybrid machine learning model to estimate self-compacting concrete compressive strength. Front Struct Civ Eng 2022;16:990–1002. https://doi.org/10.1007/s11709-022-0864-7.
- Tipu, RK, Batra, V. Development of a hybrid stacked machine learning model for predicting compressive strength of high-performance concrete. Asian J Civil Eng 2023;24:2985–3000. https://doi.org/10.1007/s42107-023-00689-z.Suman
- Mallikarjuna Rao, G, Gunneswara Rao, TD. Final setting time and compressive strength of fly ash and GGBS-Based geopolymer paste and mortar. Arabian J Sci Eng 2015;40:3067–74. https://doi.org/10.1007/s13369-015-1757-z.
- Gogineni, A, Panday, IK, Kumar, P, Paswan, Rk. Predictive modelling of concrete compressive strength incorporating GGBS and alkali using a machine-learning approach. Asian J Civil Eng 2024;25:699–709. https://doi.org/10.1007/s42107-023-00805-z.
- Philip, S, Nidhi, M, Ahmed, HU. A comparative analysis of tree-based machine learning algorithms for predicting the mechanical properties of fibre-reinforced GGBS geopolymer concrete. Multiscale and Multidiscip Model Exp Des 2024;7:2555–83. https://doi.org/10.1007/s41939-023-00355-6.
- Philip, S, Nidhi, M. Performance comparison of artificial neural network and random forest models for predicting the compressive strength of fibre-reinforced GGBS-based geopolymer concrete composites. Mater Circular Economy 2024;6:34. https://doi.org/10.1007/s42824-024-00128-7.
- Shanmukh, BSS, Sasirekha, BSVB, Sampath, VRS. Using artificial intelligence and machine learning model for prediction of uniaxial compressive strength of GGBS concrete. IOP Conf Ser Mater Sci Eng 2023;1273:012002.
- Gupta, P, Gupta, N, Saxena, KK, Goyal, S. Multilayer perceptron modelling of geopolymer composite incorporating fly ash and GGBS for prediction of compressive strength. Adv Mater Process Technol 2022;8:1441–55. https://doi.org/10.1080/2374068x.2021.1946751.
- Bilim, C, Atiş, CD, Tanyildizi, H, Karahan, O. Predicting the compressive strength of ground granulated blast furnace slag concrete using artificial neural network. Adv Eng Software 2009;40:334–40. https://doi.org/10.1016/j.advengsoft.2008.05.005.
- Yeh, I-C. Concrete slump test; 2007. https://doi.org/10.24432/C5FG7D.
- Maekawa, OK. H, data base for mechanical properties of concrete; 2001. http://bme.t.u-tokyo.ac.jp/researches/detail/concreteDB/download.html.
- Liu, W, Liu, G, Zhu, X. Applicability of machine learning algorithms in predicting chloride diffusion in concrete: modeling, evaluation, and feature analysis. Case Stud Constr Mater 2024;21:e03573. https://doi.org/10.1016/j.cscm.2024.e03573.
- Ali Khan, M, Zafar, A, Akbar, A, Javed, MF, Mosavi, A. Application of gene expression programming (GEP) for the prediction of compressive strength of geopolymer concrete. Materials 2021;14:1106. https://doi.org/10.3390/ma14051106.
- Wang, C, Xu, S, Yang, J. Adaboost algorithm in artificial intelligence for optimizing the IRI prediction accuracy of asphalt concrete pavement. Sensors 2021;21:5682. https://doi.org/10.3390/s21175682.
- Khan, K, Ahmad, A, Amin, MN, Ahmad, W, Nazar, S, Arab, AM. Comparative study of experimental and modeling of fly ash-based concrete. Materials 2022;15:3762. https://doi.org/10.3390/ma15113762.