Have a personal or library account? Click to login
Equation-driven strength prediction of GGBS concrete: a symbolic machine learning approach for sustainable development Cover

Equation-driven strength prediction of GGBS concrete: a symbolic machine learning approach for sustainable development

Open Access
|Dec 2025

References

  1. Cheng, D, Reiner, DM, Yang, F, Cui, C, Meng, J, Shan, Y, et al.. Projecting future carbon emissions from cement production in developing countries. Nat Commun 2023;14:8213. https://doi.org/10.1038/s41467-023-43660-x.
  2. Shivaprasad, KN, Yang, H-M, Singh, JK. A path to carbon neutrality in construction: an overview of recent progress in recycled cement usage. J CO2 Util 2024;83:102816. https://doi.org/10.1016/j.jcou.2024.102816.
  3. Khan, K, Ahmad, W, Amin, MN, Rafiq, MI, Abu Arab, AM, Alabdullah, IA, et al.. Evaluating the effectiveness of waste glass powder for the compressive strength improvement of cement mortar using experimental and machine learning methods. Heliyon 2023;9:e16288. https://doi.org/10.1016/j.heliyon.2023.e16288.
  4. Wu, S, Shao, Z, Andrew, RM, Bing, L, Wang, J, Niu, L, et al.. Global CO2 uptake by cement materials accounts 1930–2023. Sci Data 2024;11:1409. https://doi.org/10.1038/s41597-024-04234-8.
  5. Bouchelil, L, Shah Bukhari, SJ, Khanzadeh Moradllo, M. Evaluating the performance of internally cured limestone calcined clay concrete mixtures. J Sustain Cement-Based Mater 2025;14:198–208. https://doi.org/10.1080/21650373.2024.2432002.
  6. Bukhari, SJS, Khanzadeh Moradllo, M. Multicriteria performance assessment of ‘low w/c + low cement + high dosage admixture’ concrete: environmental, economic, durability, and mechanical performance considerations. J Clean Prod 2025;523:146419. https://doi.org/10.1016/j.jclepro.2025.146419.
  7. Fahim, AA, Bukhari, SJS, Khanzadeh Moradllo, M. Additive manufacturing of carbonatable ternary cementitious systems with cellulose nanocrystals. Constr Build Mater 2025;495:143753. https://doi.org/10.1016/j.conbuildmat.2025.143753.
  8. Ahmad, W, McCormack, SJ, Byrne, A. Biocomposites for sustainable construction: a review of material properties, applications, research gaps, and contribution to circular economy. J Build Eng 2025;105:112525. https://doi.org/10.1016/j.jobe.2025.112525.
  9. Gupta, S, Chaudhary, S. State of the art review on supplementary cementitious materials in India–II: characteristics of SCMs, effect on concrete and environmental impact. J Clean Prod 2022;357:131945. https://doi.org/10.1016/j.jclepro.2022.131945.
  10. Hu, J, Ahmed, W, Jiao, D. A critical review of the technical characteristics of recycled brick powder and its influence on concrete properties. Buildings 2024;14:3691. https://doi.org/10.3390/buildings14113691.
  11. Ahmed, W, Ye, C, Lu, G, Ng, ST, Liu, G, Wang, Y. Low-carbon concrete comprising high-volume pozzolan and recycled aggregate: evaluating mechanical performance, microstructure, environmental impact, and cost efficiency. J Clean Prod 2025;518:145796. https://doi.org/10.1016/j.jclepro.2025.145796.
  12. Ndahirwa, D, Zmamou, H, Lenormand, H, Leblanc, N. The role of supplementary cementitious materials in hydration, durability and shrinkage of cement-based materials, their environmental and economic benefits: a review. Clean Mater 2022;5:100123. https://doi.org/10.1016/j.clema.2022.100123.
  13. Park, S, Wu, S, Liu, Z, Pyo, S. The role of supplementary cementitious materials (SCMs) in ultra high performance concrete (UHPC): a review. Materials 2021;14:1472. https://doi.org/10.3390/ma14061472.
  14. Ahmed, MM, Sadoon, A, Bassuoni, MT, Ghazy, A. Utilizing agricultural residues from hot and cold climates as sustainable SCMs for low-carbon concrete. Sustainability 2024;16:10715. https://doi.org/10.3390/su162310715.
  15. Mohamad, N, Muthusamy, K, Embong, R, Kusbiantoro, A, Hashim, MH. Environmental impact of cement production and solutions: a review., vol 48; 2022. p. 741–6. https://doi.org/10.1016/j.matpr.2021.02.212.Mater Today Proc.
  16. Barbhuiya, S, Kanavaris, F, Das, BB, Idrees, M. Decarbonising cement and concrete production: strategies, challenges and pathways for sustainable development. J Build Eng 2024;86:108861. https://doi.org/10.1016/j.jobe.2024.108861.
  17. Scrivener, KL, John, VM, Gartner, EM. Eco-efficient cements: potential economically viable solutions for a low-CO2 cement-based materials industry. Cement Concr Res 2018;114:2–26. https://doi.org/10.1016/j.cemconres.2018.03.015.
  18. Miller, SA, Horvath, A, Monteiro, PJM. Impacts of booming concrete production on water resources worldwide. Nat Sustain 2018;1:69–76. https://doi.org/10.1038/s41893-017-0009-5.
  19. Jamil, M, Zhao, W, He, N, Gupta, MK, Sarikaya, M, Khan, AM, et al.. Sustainable milling of Ti–6Al–4V: a trade-off between energy efficiency, carbon emissions and machining characteristics under MQL and cryogenic environment. J Clean Prod 2021;281:125374. https://doi.org/10.1016/j.jclepro.2020.125374.
  20. Terán-Cuadrado, G, Tahir, F, Nurdiawati, A, Almarshoud, MA, Al-Ghamdi, SG. Current and potential materials for the low-carbon cement production: life cycle assessment perspective. J Build Eng 2024;96:110528. https://doi.org/10.1016/j.jobe.2024.110528.
  21. Orozco, C, Babel, S, Tangtermsirikul, S, Sugiyama, T. Comparison of environmental impacts of fly ash and slag as cement replacement materials for mass concrete and the impact of transportation. Sustain Mater Technol 2024;39:e00796. https://doi.org/10.1016/j.susmat.2023.e00796.
  22. Ahmad, J, Kontoleon, KJ, Majdi, A, Naqash, MT, Deifalla, AF, Ben Kahla, N, et al.. A comprehensive review on the ground granulated blast furnace slag (GGBS) in concrete production. Sustainability 2022;14:8783. https://doi.org/10.3390/su14148783.
  23. Zhao, Q, Pang, L, Wang, D. Adverse effects of using metallurgical slags as supplementary cementitious materials and aggregate: a review. Materials 2022;15:3803. https://doi.org/10.3390/ma15113803.
  24. Rattanadecho, P, Makul, N, Pichaicherd, A, Chanamai, P, Rungroungdouyboon, B. A novel rapid microwave-thermal process for accelerated curing of concrete: prototype design, optimal process and experimental investigations. Constr Build Mater 2016;123:768–84. https://doi.org/10.1016/j.conbuildmat.2016.07.084.
  25. Shi, C, Jiménez, AF, Palomo, A. New cements for the 21st century: the pursuit of an alternative to Portland cement. Cement Concr Res 2011;41:750–63. https://doi.org/10.1016/j.cemconres.2011.03.016.
  26. Meng, T, Yu, Y, Qian, X, Zhan, S, Qian, K. Effect of nano-TiO2 on the mechanical properties of cement mortar. Constr Build Mater 2012;29:241–5. https://doi.org/10.1016/j.conbuildmat.2011.10.047.
  27. Meddah, MS, Zitouni, S, Belâabes, S. Effect of content and particle size distribution of coarse aggregate on the compressive strength of concrete. Constr Build Mater 2010;24:505–12. https://doi.org/10.1016/j.conbuildmat.2009.10.009.
  28. Zhang, Y, Tang, Z, Liu, X, Zhou, X, He, W, Zhou, X. Study on the resistance of concrete to high-concentration sulfate attack: a case study in jinyan bridge. Materials 2024;17:3388. https://doi.org/10.3390/ma17143388.
  29. Shi, C, Qian, J. High performance cementing materials from industrial Slags—a review. Resour Conserv Recycl 2000;29:195–207. https://doi.org/10.1016/s0921-3449(99)00060-9.
  30. Engida, TG, Rao, X, Berentsen, PBM, Oude Lansink, AGJM. Measuring corporate sustainability performance– the case of European food and beverage companies. J Clean Prod 2018;195:734–43. https://doi.org/10.1016/j.jclepro.2018.05.095.
  31. Habert, G, Miller, SA, John, VM, Provis, JL, Favier, A, Horvath, A, et al.. Environmental impacts and decarbonization strategies in the cement and concrete industries. Nat Rev Earth Environ 2020;1:559–73. https://doi.org/10.1038/s43017-020-0093-3.
  32. Bernal, SA, Provis, JL. Durability of alkali‐activated materials: progress and perspectives. J Am Ceram Soc 2014;97:997–1008. https://doi.org/10.1111/jace.12831.
  33. Thomas, BS, Gupta, RC. A comprehensive review on the applications of waste tire rubber in cement concrete. Renew Sustain Energy Rev 2016;54:1323–33. https://doi.org/10.1016/j.rser.2015.10.092.
  34. Turner, LK, Collins, FG. Carbon dioxide equivalent (CO2-e) emissions: a comparison between geopolymer and OPC cement concrete. Constr Build Mater 2013;43:125–30. https://doi.org/10.1016/j.conbuildmat.2013.01.023.
  35. Lawrence, A, Nehler, T, Andersson, E, Karlsson, M, Thollander, P. Drivers, barriers and success factors for energy management in the Swedish pulp and paper industry. J Clean Prod 2019;223:67–82. https://doi.org/10.1016/j.jclepro.2019.03.143.
  36. Xu, J, Jiang, L, Wang, J. Influence of detection methods on chloride threshold value for the corrosion of steel reinforcement. Constr Build Mater 2009;23:1902–8. https://doi.org/10.1016/j.conbuildmat.2008.09.011.
  37. Pourjavadi, A, Fakoorpoor, SM, Hosseini, P, Khaloo, A. Interactions between superabsorbent polymers and cement-based composites incorporating colloidal silica nanoparticles. Cement Concr Compos 2013;37:196–204. https://doi.org/10.1016/j.cemconcomp.2012.10.005.
  38. He, Z-h., Li, L-y., Du, S-g. Creep analysis of concrete containing rice husk ash. Cement Concr Compos 2017;80:190–9. https://doi.org/10.1016/j.cemconcomp.2017.03.014.
  39. Xu, S, Wang, W, Dong, S, Li, Q, Liu, X, Peng, Y. Thermal stability study of fiber-reinforced cementitious composites with high ductility under high-temperature casting. Constr Build Mater 2021;282:122700. https://doi.org/10.1016/j.conbuildmat.2021.122700.
  40. Anand, P, Singh, SD, Bhowmik, PN, Kontoni, D-PN. Optimizing concrete mix proportions with zeolite, GGBS, and CDW: a data-driven approach integrating experimental analysis and machine learning models. Eng Res Express 2025;7:015105. https://doi.org/10.1088/2631-8695/ada51c.
  41. Dash, PK, Parhi, SK, Patro, SK, Panigrahi, R. Efficient machine learning algorithm with enhanced cat swarm optimization for prediction of compressive strength of GGBS-based geopolymer concrete at elevated temperature. Constr Build Mater 2023;400:132814. https://doi.org/10.1016/j.conbuildmat.2023.132814.
  42. Valenza, JJ, Thomas, JJ. Permeability and elastic modulus of cement paste as a function of curing temperature. Cement Concr Res 2012;42:440–6. https://doi.org/10.1016/j.cemconres.2011.11.012.
  43. Ahmad, W, Veeraghantla, VSSCS, Byrne, A. Advancing sustainable concrete using biochar: experimental and modelling Study for mechanical strength evaluation. Sustainability 2025;17:2516. https://doi.org/10.3390/su17062516.
  44. Poon, CS, Ho, DWS. A feasibility study on the utilization of r-FA in SCC. Cement Concr Res 2004;34:2337–9. https://doi.org/10.1016/j.cemconres.2004.02.013.
  45. Yang, K, Yang, C, Zhu, X. High volume ground granulated blast-furnace slag cement, high-volume mineral admixtures in cementitious binders. Cambridge, UK: Elsevier; 2025:1–29 pp.
  46. Sezavar, R, Shafabakhsh, G, Mirabdolazimi, SM. New model of moisture susceptibility of nano silica-modified asphalt concrete using GMDH algorithm. Constr Build Mater 2019;211:528–38. https://doi.org/10.1016/j.conbuildmat.2019.03.114.
  47. Chou, J-S, Pham, A-D. Enhanced artificial intelligence for ensemble approach to predicting high performance concrete compressive strength. Constr Build Mater 2013;49:554–63. https://doi.org/10.1016/j.conbuildmat.2013.08.078.
  48. Yeh, IC. Modeling of strength of high-performance concrete using artificial neural networks. Cement Concr Res 1998;28:1797–808. https://doi.org/10.1016/s0008-8846(98)00165-3.
  49. Yang, H, Bai, L, Duan, Y, Xie, H, Wang, X, Zhang, R, et al.. Upcycling corn straw into nanocelluloses via enzyme-assisted homogenization: application as building blocks for high-performance films. J Clean Prod 2023;390:136215. https://doi.org/10.1016/j.jclepro.2023.136215.
  50. Asteris, PG, Skentou, AD, Bardhan, A, Samui, P, Pilakoutas, K. Predicting concrete compressive strength using hybrid ensembling of surrogate machine learning models. Cement Concr Res 2021;145:106449. https://doi.org/10.1016/j.cemconres.2021.106449.
  51. Mansouri, E, Manfredi, M, Hu, J-W. Environmentally friendly concrete compressive strength prediction using hybrid machine learning. Sustainability 2022;14:12990. https://doi.org/10.3390/su142012990.
  52. Farooq, F, Ahmed, W, Akbar, A, Aslam, F, Alyousef, R. Predictive modeling for sustainable high-performance concrete from industrial wastes: a comparison and optimization of models using ensemble learners. J Clean Prod 2021;292:126032. https://doi.org/10.1016/j.jclepro.2021.126032.
  53. Cook, R, Lapeyre, J, Ma, H, Kumar, A. Prediction of compressive strength of concrete: critical comparison of performance of a hybrid machine learning model with standalone models. J Mater Civ Eng 2019;31:04019255. https://doi.org/10.1061/(asce)mt.1943-5533.0002902.
  54. Kashem, A, Karim, R, Das, P, Datta, SD, Alharthai, M. Compressive strength prediction of sustainable concrete incorporating rice husk ash (RHA) using hybrid machine learning algorithms and parametric analyses. Case Stud Constr Mater 2024;20:e03030. https://doi.org/10.1016/j.cscm.2024.e03030.
  55. Hameed, MM, Abed, MA, Al-Ansari, N, Alomar, MK. Predicting compressive strength of concrete containing industrial waste materials: novel and hybrid machine learning model. Adv Civ Eng 2022;2022:5586737. https://doi.org/10.1155/2022/5586737.
  56. Joshi, DA, Menon, R, Jain, RK, Kulkarni, AV. Deep learning based concrete compressive strength prediction model with hybrid meta-heuristic approach. Expert Syst Appl 2023;233:120925. https://doi.org/10.1016/j.eswa.2023.120925.
  57. Ly, H-B, Nguyen, T-A, Pham, BT, Nguyen, MH. A hybrid machine learning model to estimate self-compacting concrete compressive strength. Front Struct Civ Eng 2022;16:990–1002. https://doi.org/10.1007/s11709-022-0864-7.
  58. Tipu, RK, Batra, V. Development of a hybrid stacked machine learning model for predicting compressive strength of high-performance concrete. Asian J Civil Eng 2023;24:2985–3000. https://doi.org/10.1007/s42107-023-00689-z.Suman
  59. Mallikarjuna Rao, G, Gunneswara Rao, TD. Final setting time and compressive strength of fly ash and GGBS-Based geopolymer paste and mortar. Arabian J Sci Eng 2015;40:3067–74. https://doi.org/10.1007/s13369-015-1757-z.
  60. Gogineni, A, Panday, IK, Kumar, P, Paswan, Rk. Predictive modelling of concrete compressive strength incorporating GGBS and alkali using a machine-learning approach. Asian J Civil Eng 2024;25:699–709. https://doi.org/10.1007/s42107-023-00805-z.
  61. Philip, S, Nidhi, M, Ahmed, HU. A comparative analysis of tree-based machine learning algorithms for predicting the mechanical properties of fibre-reinforced GGBS geopolymer concrete. Multiscale and Multidiscip Model Exp Des 2024;7:2555–83. https://doi.org/10.1007/s41939-023-00355-6.
  62. Philip, S, Nidhi, M. Performance comparison of artificial neural network and random forest models for predicting the compressive strength of fibre-reinforced GGBS-based geopolymer concrete composites. Mater Circular Economy 2024;6:34. https://doi.org/10.1007/s42824-024-00128-7.
  63. Shanmukh, BSS, Sasirekha, BSVB, Sampath, VRS. Using artificial intelligence and machine learning model for prediction of uniaxial compressive strength of GGBS concrete. IOP Conf Ser Mater Sci Eng 2023;1273:012002.
  64. Gupta, P, Gupta, N, Saxena, KK, Goyal, S. Multilayer perceptron modelling of geopolymer composite incorporating fly ash and GGBS for prediction of compressive strength. Adv Mater Process Technol 2022;8:1441–55. https://doi.org/10.1080/2374068x.2021.1946751.
  65. Bilim, C, Atiş, CD, Tanyildizi, H, Karahan, O. Predicting the compressive strength of ground granulated blast furnace slag concrete using artificial neural network. Adv Eng Software 2009;40:334–40. https://doi.org/10.1016/j.advengsoft.2008.05.005.
  66. Yeh, I-C. Concrete slump test; 2007. https://doi.org/10.24432/C5FG7D.
  67. Maekawa, OK. H, data base for mechanical properties of concrete; 2001. http://bme.t.u-tokyo.ac.jp/researches/detail/concreteDB/download.html.
  68. Liu, W, Liu, G, Zhu, X. Applicability of machine learning algorithms in predicting chloride diffusion in concrete: modeling, evaluation, and feature analysis. Case Stud Constr Mater 2024;21:e03573. https://doi.org/10.1016/j.cscm.2024.e03573.
  69. Ali Khan, M, Zafar, A, Akbar, A, Javed, MF, Mosavi, A. Application of gene expression programming (GEP) for the prediction of compressive strength of geopolymer concrete. Materials 2021;14:1106. https://doi.org/10.3390/ma14051106.
  70. Wang, C, Xu, S, Yang, J. Adaboost algorithm in artificial intelligence for optimizing the IRI prediction accuracy of asphalt concrete pavement. Sensors 2021;21:5682. https://doi.org/10.3390/s21175682.
  71. Khan, K, Ahmad, A, Amin, MN, Ahmad, W, Nazar, S, Arab, AM. Comparative study of experimental and modeling of fly ash-based concrete. Materials 2022;15:3762. https://doi.org/10.3390/ma15113762.
Language: English
Submitted on: Aug 14, 2025
Accepted on: Oct 31, 2025
Published on: Dec 11, 2025
Published by: Sciendo
In partnership with: Paradigm Publishing Services

© 2025 Muhammad Nasir Amin, Asad Naeem, Muhammad Iftikhar Faraz, Muhammad Tahir Qadir, published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 License.