Have a personal or library account? Click to login
Mechanical properties and fatigue analysis of rubber concrete under uniaxial compression modified by a combination of mineral admixture Cover

Mechanical properties and fatigue analysis of rubber concrete under uniaxial compression modified by a combination of mineral admixture

Open Access
|Nov 2025

References

  1. Azunna, SU, Aziz, FN, Rashid, RS, Bakar, NB. Review on the characteristic properties of crumb rubber concrete. Cleaner Mater 2024;12:100237. https://doi.org/10.1016/j.clema.2024.100237.
  2. Baktheer, A, Chudoba, R. Experimental study of the interacting effects of loading rate and temperature on concrete fatigue behavior under compression. Constr Build Mater 2025;458:139466. https://doi.org/10.1016/j.conbuildmat.2024.139466.
  3. Moasas, AM, Amin, MN, Khan, K, Ahmad, W, Al-Hashem, MNA, Deifalla, AF, et al.. A worldwide development in the accumulation of waste tires and its utilization in concrete as a sustainable construction material: a review. Case Stud Constr Mater 2022;17:e01677. https://doi.org/10.1016/j.cscm.2022.e01677.
  4. Ahmed, S, Elshazli, MT, Zaghlal, M, Alashker, Y, Abdo, A. Improving shear behavior of rubberized concrete beams through sustainable integration of waste tire steel fibers and treated rubber. J Build Eng 2024;96:110649. https://doi.org/10.1016/j.jobe.2024.110649.
  5. Meng, X, Wen, W, Feng, F, Liao, J, Zhang, S, Li, L, et al.. Mechanical properties and damage characteristics of modified polyurethane concrete under uniaxial and cyclic compression. Constr Build Mater 2025;458:139633. https://doi.org/10.1016/j.conbuildmat.2024.139633.
  6. Voß, S, Schmidt, B, Oettel, V. Fatigue resistance of concrete: influence of time-dependent scattering of compressive strength. Mater Struct 2025;58:1–19.
  7. Rashid, K, Yazdanbakhsh, A, Rehman, MU. Sustainable selection of the concrete incorporating recycled tire aggregate to be used as medium to low strength material. J Clean Prod 2019;224:396–410. https://doi.org/10.1016/j.jclepro.2019.03.197.
  8. Yuan, C, Qu, S, Bai, W, Guan, J, Xie, Y. Study on the mechanical properties and mesoscopic damage mechanism of recycled aggregate concrete under different dynamic strain rates after freeze-thaw cycles. Case Stud Constr Mater 2025;22:e04182. https://doi.org/10.1016/j.cscm.2024.e04182.
  9. Wang, X, Fang, SJ. Comparison of fatigue design code requirements for wind turbine foundations. Spec Publ 2021;348:145–58.
  10. Golewski, GL. Investigating the effect of using three pozzolans (including the nanoadditive) in combination on the formation and development of cracks in concretes using non-contact measurement method. Adv. Nano Res 2024;16:217–29.
  11. Xi, X, Zheng, Y, Zhuo, J, Zhang, P, Golewski, GL, Du, C. Mechanical properties and hydration mechanism of nano-silica modified alkali-activated thermally activated recycled cement. J Build Eng 2024;98:110998. https://doi.org/10.1016/j.jobe.2024.110998.
  12. Golewski, GL. Using digital image correlation to evaluate fracture toughness and crack propagation in the mode I testing of concretes involving fly ash and synthetic nano-SiO2. Mater Res Express 2024;11:095504. https://doi.org/10.1088/2053-1591/ad755e.
  13. Wang, L, Zhang, P, Golewski, G, Guan, J. Editorial: fabrication and properties of concrete containing industrial waste. Front Mater 2023;10:1169715. https://doi.org/10.3389/fmats.2023.1169715.
  14. Xi, X, Zheng, Y, Zhuo, J, Zhang, P, Golewski, GL, Du, C. Influence of water glass modulus and alkali content on the properties of alkali-activated thermally activated recycled cement. Constr Build Mater 2024;452:138867. https://doi.org/10.1016/j.conbuildmat.2024.138867.
  15. Zhang, W, Yu, H, Yin, B, Akbar, A, Liew, KM. Sustainable transformation of end-of-life wind turbine blades: advancing clean energy solutions in civil engineering through recycling and upcycling. J Clean Prod 2023;426:139184. https://doi.org/10.1016/j.jclepro.2023.139184.
  16. Ferreira, E, Sotoudeh, P, Svecova, D. Fatigue life of plain concrete subjected to low frequency uniaxial stress reversal loading. Constr Build Mater 2024;411:134247. https://doi.org/10.1016/j.conbuildmat.2023.134247.
  17. Liu, S, Wang, X, Li, Y, Liu, Y. Stress-strain relationship of airfoiled-shaped milled-cut steel fiber-reinforced concrete under uniaxial compression: experiments and analytical model. Case Stud Constr Mater 2024;21:e03925. https://doi.org/10.1016/j.cscm.2024.e03925.
  18. Kuang, F, Long, Z, Kuang, D, Guo, R, Sun, J. Experimental study on high temperatures performance of rubberized geopolymer mortar. J Build Eng 2023;76:107091. https://doi.org/10.1016/j.jobe.2023.107091.
  19. Cheng, S, He, H, Lan, B. Uniaxial compression test and performance analysis of multiscale modified concrete. J Mater Civ Eng 2024;36:04023582. https://doi.org/10.1061/jmcee7.mteng-13688.
  20. Kwon, SH, Lee, JS, Koh, K, Kim, HK. Strain softening of high-performance fiber-reinforced cementitious composites in uniaxial compression. Int J Concr Struct Mater 2024;18:17. https://doi.org/10.1186/s40069-023-00658-5.
  21. Yolcu, A, Karakoç, MB, Ekinci, E, Özcan, A, Sağır, MA. Effect of binder dosage and the use of waste rubber fiber on the mechanical and durability performance of geopolymer concrete. J Build Eng 2022;61:105162. https://doi.org/10.1016/j.jobe.2022.105162.
  22. Zang, R, Xu, B, Bompa, DV, Tam, VW, Garcia-Troncoso, N, Hao, J. Probabilistic fatigue modelling of concrete materials incorporating recycled tyre rubber under flexural loadings. Constr Build Mater 2024;435:136862. https://doi.org/10.1016/j.conbuildmat.2024.136862.
  23. Elbialy, S, Ibrahim, W, Mahmoud, S, Ayash, NM, Mamdouh, H. Mechanical characteristics and structural performance of rubberized concrete: experimental and analytical analysis. Case Stud Constr Mater 2024;21:e03727. https://doi.org/10.1016/j.cscm.2024.e03727.
  24. Bala, A, Gupta, S. Thermal resistivity, sound absorption and vibration damping of concrete composite doped with waste tire Rubber: a review. Constr Build Mater 2021;299:123939. https://doi.org/10.1016/j.conbuildmat.2021.123939.
  25. Akbar, M, Umar, T, Hussain, Z, Pan, H, Ou, G. Effect of human hair fibers on the performance of concrete incorporating high dosage of silica fume. Appl Sci 2023;13:124. https://doi.org/10.3390/app13010124.
  26. Zhang, P, Wang, C, Guo, J, Wu, J, Zhang, C. Production of sustainable steel fiber-reinforced rubberized concrete with enhanced mechanical properties: a state-of-the-art review. J Build Eng 2024;91:109735. https://doi.org/10.1016/j.jobe.2024.109735.
  27. Abbas, S, Fatima, A, Kazmi, SMS, Munir, MJ, Ali, S, Rizvi, MA. Effect of particle sizes and dosages of rubber waste on the mechanical properties of rubberized concrete composite. Appl Sci 2022;12:8460. https://doi.org/10.3390/app12178460.
  28. Zhang, B, Feng, Y, Xie, J, Lai, D, Yu, T, Huang, D. Rubberized geopolymer concrete: dependence of mechanical properties and freeze-thaw resistance on replacement ratio of crumb rubber. Constr Build Mater 2021;310:125248. https://doi.org/10.1016/j.conbuildmat.2021.125248.
  29. Zhang, X, Wang, C, Wang, J, Liu, X, Huang, Y, Wang, L, et al.. Experimental study on the compressive fatigue performance of nano-silica modified recycled aggregate concrete. Constr Build Mater 2024;447:138161. https://doi.org/10.1016/j.conbuildmat.2024.138161.
  30. Guo, Z, Wang, L, Feng, L, Guo, Y. Research on fatigue performance of composite crumb rubber modified asphalt mixture under freeze thaw cycles. Constr Build Mater 2022;323:126603. https://doi.org/10.1016/j.conbuildmat.2022.126603.
  31. Liu, F, Zheng, W, Li, L, Feng, W, Ning, G. Mechanical and fatigue performance of rubber concrete. Constr Build Mater 2013;47:711–19. https://doi.org/10.1016/j.conbuildmat.2013.05.055.
  32. Trento, D, Ortega-Lopez, V, Zanini, MA, Faleschini, F. Stress-strain behavior of electric arc furnace slag concrete under uniaxial compression: short-and long-term evaluation. Constr Build Mater 2024;422:135837. https://doi.org/10.1016/j.conbuildmat.2024.135837.
  33. Siddiqui, JA, Abdelmongy, M, Akbar, M, Alshammari, TO, Yosri, AM, Ghazouani, N. Optimizing concrete performance: the influence of carbon nanotube dispersion method. Iran J Sci Technol Trans Civ Eng 2025. https://doi.org/10.1007/s40996-025-01993-1.
  34. Wang, S, Lv, S, Pan, Q, Wang, P, Deng, W, Zhang, B, et al.. Investigation on strength and fatigue performance of cement-stabilized macadam under three-dimensional stress state at different ages and cement dosages. Constr Build Mater 2024;435:136686. https://doi.org/10.1016/j.conbuildmat.2024.136686.
  35. Li, D, Xiao, J, Zhuge, Y, Mills, JE, Senko, H, Ma, X. Experimental study on crumb rubberised concrete (CRC) and reinforced CRC slabs under static and impact loads. Aust J Struct Eng 2020;21:294–306. https://doi.org/10.1080/13287982.2020.1809811.
  36. Akbar, M, Hussain, Z, Imran, M, Bhatti, S, Anees, M. Concrete matrix based on marble powder, waste glass sludge, and crumb rubber: pathways towards sustainable concrete. Front Mater 2024;10:1329386. https://doi.org/10.3389/fmats.2023.1329386.
  37. Marzec, I, Tejchman, J. Fracture evolution in concrete compressive fatigue experiments based on X-ray micro-CT images. Int J Fatig 2019;122:256–72. https://doi.org/10.1016/j.ijfatigue.2019.02.002.
  38. Al-Tayeb, MM, Bakar, BA, Ismail, H, Akil, HM. Impact resistance of concrete with partial replacements of sand and cement by waste rubber. Polym-Plast Technol Eng 2012;51:1230–6. https://doi.org/10.1080/03602559.2012.696767.
  39. Zar, A, Hussain, Z, Akbar, M, Rabczuk, T, Lin, Z, Li, S, et al.. Towards vibration-based damage detection of civil engineering structures: overview, challenges, and future prospects. Int J Mech Mater Des 2024;20:591–662. https://doi.org/10.1007/s10999-023-09692-3.
  40. Fakhri, M, Saberi, KF. The effect of waste rubber particles and silica fume on the mechanical properties of roller compacted concrete pavement. J Clean Prod 2016;129:521–30. https://doi.org/10.1016/j.jclepro.2016.04.017.
  41. Kang, J, Chen, X, Yu, Z, Wang, L. Study on the fatigue life and toughness of recycled aggregate concrete based on basalt fiber. Mater Today Commun 2024;40:109397. https://doi.org/10.1016/j.mtcomm.2024.109397.
  42. Kim, JK, Kim, YY. Experimental study of the fatigue behavior of high strength concrete. Cement Concr Res 1996;26:1513–23. https://doi.org/10.1016/0008-8846-96-00151-2.
  43. Guo, MM, Feng, ZR, Wang, XJ. Effect of pre-crack on fatigue behaviors of concrete under tension and compression loading. In: Materials Science Forum. Pfaffikon, Switzerland: Trans Tech Publications Ltd; 2016, 873:110–4 pp.
  44. Medeiros, A, Zhang, X, Ruiz, G, Rena, CY, Velasco, MDSL. Effect of the loading frequency on the compressive fatigue behavior of plain and fiber reinforced concrete. Int J Fatig 2015;70:342–50. https://doi.org/10.1016/j.ijfatigue.2014.08.005.
  45. Pacheco-Torres, R, Cerro-Prada, E, Escolano, F, Varela, F. Fatigue performance of waste rubber concrete for rigid road pavements. Constr Build Mater 2018;176:539–48. https://doi.org/10.1016/j.conbuildmat.2018.05.030.
  46. Liu, M, Lu, J, Jiang, W, Ming, P. Study on fatigue damage and fatigue crack propagation of rubber concrete. J Build Eng 2023;65:105718. https://doi.org/10.1016/j.jobe.2022.105718.
  47. Marques, AM, Correia, JR, De Brito, J. Post-fire residual mechanical properties of concrete made with recycled rubber aggregate. Fire Saf J 2013;58:49–57. https://doi.org/10.1016/j.firesaf.2013.02.002.
  48. Akbar, M, Hussain, Z, Huali, P, Imran, M, Thomas, BS. Impact of waste crumb rubber on concrete performance incorporating silica fume and fly ash to make a sustainable low carbon concrete. Struct Eng Mech 2023;85.
  49. Ganjian, E, Khorami, M, Maghsoudi, AA. Scrap-tyre-rubber replacement for aggregate and filler in concrete. Constr Build Mater 2009;23:1828–36. https://doi.org/10.1016/j.conbuildmat.2008.09.020.
  50. Viswanath, S, Kuchma, DA, LaFave, JM. Experimental investigation of concrete fatigue in axial compression. ACI Struct J 2021;118:263–76.
  51. Golewski, GL. Determination of fracture mechanic parameters of concretes based on cement matrix enhanced by fly ash and nano-silica. Materials 2024;17:4230. https://doi.org/10.3390/ma17174230.
  52. 52. ASTM C136/C136M-19. Standard test method for sieve analysis of fine and coarse aggregates. West Conshohocken: ASTM International; 2019.
    ASTM C136/C136M-19 Standard test method for sieve analysis of fine and coarse aggregates West Conshohocken ASTM International 2019
  53. 53. Rubber, vulcanized or thermoplastic - Determination of density. Geneva, Switzerland: International Organization for Standardization (ISO); 2018.
    Rubber, vulcanized or thermoplastic - Determination of density Geneva, Switzerland International Organization for Standardization (ISO) 2018
  54. 54. ASTM. Standard test method for compressive strength of cylindrical concrete specimens. ASTM C39-20. West Conshohocken, PA: ASTM International; 2020.
    ASTM Standard test method for compressive strength of cylindrical concrete specimens ASTM C39-20 West Conshohocken, PA ASTM International 2020
  55. 55. ASTM C78. Standard test method for flexural strength of concrete using simple beam with: ASTM International; 2002.
    ASTM C78 Standard test method for flexural strength of concrete using simple beam with: ASTM International 2002 .
  56. Chen, X, Bu, J, Fan, X, Lu, J, Xu, L. Effect of loading frequency and stress level on low cycle fatigue behavior of plain concrete in direct tension. Constr Build Mater 2017;133:367–75. https://doi.org/10.1016/j.conbuildmat.2016.12.085.
  57. Saucedo, L, Rena, CY, Medeiros, A, Zhang, X, Ruiz, G. A probabilistic fatigue model based on the initial distribution to consider frequency effect in plain and fiber reinforced concrete. Int J Fatig 2013;48:308–18. https://doi.org/10.1016/j.ijfatigue.2012.11.013.
  58. Xu, J, Fu, Z, Han, Q, Lacidogna, G, Carpinteri, A. Micro-cracking monitoring and fracture evaluation for crumb rubber concrete based on acoustic emission techniques. Struct Health Monit 2018;17:946–58. https://doi.org/10.1177/1475921717730538.
  59. Cui, K, Xu, L, Li, X, Hu, X, Huang, L, Deng, F, et al.. Fatigue life analysis of polypropylene fiber reinforced concrete under axial constant-amplitude cyclic compression. J Clean Prod 2021;319:128610. https://doi.org/10.1016/j.jclepro.2021.128610.
  60. Hashin, Z, Rotem, A. A cumulative damage theory of fatigue failure. Mater Sci Eng 1978;34:147–60. https://doi.org/10.1016/0025-5416-78-90045-9.
Language: English
Submitted on: Jun 12, 2025
Accepted on: Oct 8, 2025
Published on: Nov 14, 2025
Published by: Sciendo
In partnership with: Paradigm Publishing Services

© 2025 Muhammad Akbar, Bilal Ahmed, Wu Qing, Jan Kubica, Ali Zar, Heba Abdou, Ahmed M. Yosri, Yasser R. Zaghloul, published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 License.