References
- Azunna, SU, Aziz, FN, Rashid, RS, Bakar, NB. Review on the characteristic properties of crumb rubber concrete. Cleaner Mater 2024;12:100237. https://doi.org/10.1016/j.clema.2024.100237.
- Baktheer, A, Chudoba, R. Experimental study of the interacting effects of loading rate and temperature on concrete fatigue behavior under compression. Constr Build Mater 2025;458:139466. https://doi.org/10.1016/j.conbuildmat.2024.139466.
- Moasas, AM, Amin, MN, Khan, K, Ahmad, W, Al-Hashem, MNA, Deifalla, AF, et al.. A worldwide development in the accumulation of waste tires and its utilization in concrete as a sustainable construction material: a review. Case Stud Constr Mater 2022;17:e01677. https://doi.org/10.1016/j.cscm.2022.e01677.
- Ahmed, S, Elshazli, MT, Zaghlal, M, Alashker, Y, Abdo, A. Improving shear behavior of rubberized concrete beams through sustainable integration of waste tire steel fibers and treated rubber. J Build Eng 2024;96:110649. https://doi.org/10.1016/j.jobe.2024.110649.
- Meng, X, Wen, W, Feng, F, Liao, J, Zhang, S, Li, L, et al.. Mechanical properties and damage characteristics of modified polyurethane concrete under uniaxial and cyclic compression. Constr Build Mater 2025;458:139633. https://doi.org/10.1016/j.conbuildmat.2024.139633.
- Voß, S, Schmidt, B, Oettel, V. Fatigue resistance of concrete: influence of time-dependent scattering of compressive strength. Mater Struct 2025;58:1–19.
- Rashid, K, Yazdanbakhsh, A, Rehman, MU. Sustainable selection of the concrete incorporating recycled tire aggregate to be used as medium to low strength material. J Clean Prod 2019;224:396–410. https://doi.org/10.1016/j.jclepro.2019.03.197.
- Yuan, C, Qu, S, Bai, W, Guan, J, Xie, Y. Study on the mechanical properties and mesoscopic damage mechanism of recycled aggregate concrete under different dynamic strain rates after freeze-thaw cycles. Case Stud Constr Mater 2025;22:e04182. https://doi.org/10.1016/j.cscm.2024.e04182.
- Wang, X, Fang, SJ. Comparison of fatigue design code requirements for wind turbine foundations. Spec Publ 2021;348:145–58.
- Golewski, GL. Investigating the effect of using three pozzolans (including the nanoadditive) in combination on the formation and development of cracks in concretes using non-contact measurement method. Adv. Nano Res 2024;16:217–29.
- Xi, X, Zheng, Y, Zhuo, J, Zhang, P, Golewski, GL, Du, C. Mechanical properties and hydration mechanism of nano-silica modified alkali-activated thermally activated recycled cement. J Build Eng 2024;98:110998. https://doi.org/10.1016/j.jobe.2024.110998.
- Golewski, GL. Using digital image correlation to evaluate fracture toughness and crack propagation in the mode I testing of concretes involving fly ash and synthetic nano-SiO2. Mater Res Express 2024;11:095504. https://doi.org/10.1088/2053-1591/ad755e.
- Wang, L, Zhang, P, Golewski, G, Guan, J. Editorial: fabrication and properties of concrete containing industrial waste. Front Mater 2023;10:1169715. https://doi.org/10.3389/fmats.2023.1169715.
- Xi, X, Zheng, Y, Zhuo, J, Zhang, P, Golewski, GL, Du, C. Influence of water glass modulus and alkali content on the properties of alkali-activated thermally activated recycled cement. Constr Build Mater 2024;452:138867. https://doi.org/10.1016/j.conbuildmat.2024.138867.
- Zhang, W, Yu, H, Yin, B, Akbar, A, Liew, KM. Sustainable transformation of end-of-life wind turbine blades: advancing clean energy solutions in civil engineering through recycling and upcycling. J Clean Prod 2023;426:139184. https://doi.org/10.1016/j.jclepro.2023.139184.
- Ferreira, E, Sotoudeh, P, Svecova, D. Fatigue life of plain concrete subjected to low frequency uniaxial stress reversal loading. Constr Build Mater 2024;411:134247. https://doi.org/10.1016/j.conbuildmat.2023.134247.
- Liu, S, Wang, X, Li, Y, Liu, Y. Stress-strain relationship of airfoiled-shaped milled-cut steel fiber-reinforced concrete under uniaxial compression: experiments and analytical model. Case Stud Constr Mater 2024;21:e03925. https://doi.org/10.1016/j.cscm.2024.e03925.
- Kuang, F, Long, Z, Kuang, D, Guo, R, Sun, J. Experimental study on high temperatures performance of rubberized geopolymer mortar. J Build Eng 2023;76:107091. https://doi.org/10.1016/j.jobe.2023.107091.
- Cheng, S, He, H, Lan, B. Uniaxial compression test and performance analysis of multiscale modified concrete. J Mater Civ Eng 2024;36:04023582. https://doi.org/10.1061/jmcee7.mteng-13688.
- Kwon, SH, Lee, JS, Koh, K, Kim, HK. Strain softening of high-performance fiber-reinforced cementitious composites in uniaxial compression. Int J Concr Struct Mater 2024;18:17. https://doi.org/10.1186/s40069-023-00658-5.
- Yolcu, A, Karakoç, MB, Ekinci, E, Özcan, A, Sağır, MA. Effect of binder dosage and the use of waste rubber fiber on the mechanical and durability performance of geopolymer concrete. J Build Eng 2022;61:105162. https://doi.org/10.1016/j.jobe.2022.105162.
- Zang, R, Xu, B, Bompa, DV, Tam, VW, Garcia-Troncoso, N, Hao, J. Probabilistic fatigue modelling of concrete materials incorporating recycled tyre rubber under flexural loadings. Constr Build Mater 2024;435:136862. https://doi.org/10.1016/j.conbuildmat.2024.136862.
- Elbialy, S, Ibrahim, W, Mahmoud, S, Ayash, NM, Mamdouh, H. Mechanical characteristics and structural performance of rubberized concrete: experimental and analytical analysis. Case Stud Constr Mater 2024;21:e03727. https://doi.org/10.1016/j.cscm.2024.e03727.
- Bala, A, Gupta, S. Thermal resistivity, sound absorption and vibration damping of concrete composite doped with waste tire Rubber: a review. Constr Build Mater 2021;299:123939. https://doi.org/10.1016/j.conbuildmat.2021.123939.
- Akbar, M, Umar, T, Hussain, Z, Pan, H, Ou, G. Effect of human hair fibers on the performance of concrete incorporating high dosage of silica fume. Appl Sci 2023;13:124. https://doi.org/10.3390/app13010124.
- Zhang, P, Wang, C, Guo, J, Wu, J, Zhang, C. Production of sustainable steel fiber-reinforced rubberized concrete with enhanced mechanical properties: a state-of-the-art review. J Build Eng 2024;91:109735. https://doi.org/10.1016/j.jobe.2024.109735.
- Abbas, S, Fatima, A, Kazmi, SMS, Munir, MJ, Ali, S, Rizvi, MA. Effect of particle sizes and dosages of rubber waste on the mechanical properties of rubberized concrete composite. Appl Sci 2022;12:8460. https://doi.org/10.3390/app12178460.
- Zhang, B, Feng, Y, Xie, J, Lai, D, Yu, T, Huang, D. Rubberized geopolymer concrete: dependence of mechanical properties and freeze-thaw resistance on replacement ratio of crumb rubber. Constr Build Mater 2021;310:125248. https://doi.org/10.1016/j.conbuildmat.2021.125248.
- Zhang, X, Wang, C, Wang, J, Liu, X, Huang, Y, Wang, L, et al.. Experimental study on the compressive fatigue performance of nano-silica modified recycled aggregate concrete. Constr Build Mater 2024;447:138161. https://doi.org/10.1016/j.conbuildmat.2024.138161.
- Guo, Z, Wang, L, Feng, L, Guo, Y. Research on fatigue performance of composite crumb rubber modified asphalt mixture under freeze thaw cycles. Constr Build Mater 2022;323:126603. https://doi.org/10.1016/j.conbuildmat.2022.126603.
- Liu, F, Zheng, W, Li, L, Feng, W, Ning, G. Mechanical and fatigue performance of rubber concrete. Constr Build Mater 2013;47:711–19. https://doi.org/10.1016/j.conbuildmat.2013.05.055.
- Trento, D, Ortega-Lopez, V, Zanini, MA, Faleschini, F. Stress-strain behavior of electric arc furnace slag concrete under uniaxial compression: short-and long-term evaluation. Constr Build Mater 2024;422:135837. https://doi.org/10.1016/j.conbuildmat.2024.135837.
- Siddiqui, JA, Abdelmongy, M, Akbar, M, Alshammari, TO, Yosri, AM, Ghazouani, N. Optimizing concrete performance: the influence of carbon nanotube dispersion method. Iran J Sci Technol Trans Civ Eng 2025. https://doi.org/10.1007/s40996-025-01993-1.
- Wang, S, Lv, S, Pan, Q, Wang, P, Deng, W, Zhang, B, et al.. Investigation on strength and fatigue performance of cement-stabilized macadam under three-dimensional stress state at different ages and cement dosages. Constr Build Mater 2024;435:136686. https://doi.org/10.1016/j.conbuildmat.2024.136686.
- Li, D, Xiao, J, Zhuge, Y, Mills, JE, Senko, H, Ma, X. Experimental study on crumb rubberised concrete (CRC) and reinforced CRC slabs under static and impact loads. Aust J Struct Eng 2020;21:294–306. https://doi.org/10.1080/13287982.2020.1809811.
- Akbar, M, Hussain, Z, Imran, M, Bhatti, S, Anees, M. Concrete matrix based on marble powder, waste glass sludge, and crumb rubber: pathways towards sustainable concrete. Front Mater 2024;10:1329386. https://doi.org/10.3389/fmats.2023.1329386.
- Marzec, I, Tejchman, J. Fracture evolution in concrete compressive fatigue experiments based on X-ray micro-CT images. Int J Fatig 2019;122:256–72. https://doi.org/10.1016/j.ijfatigue.2019.02.002.
- Al-Tayeb, MM, Bakar, BA, Ismail, H, Akil, HM. Impact resistance of concrete with partial replacements of sand and cement by waste rubber. Polym-Plast Technol Eng 2012;51:1230–6. https://doi.org/10.1080/03602559.2012.696767.
- Zar, A, Hussain, Z, Akbar, M, Rabczuk, T, Lin, Z, Li, S, et al.. Towards vibration-based damage detection of civil engineering structures: overview, challenges, and future prospects. Int J Mech Mater Des 2024;20:591–662. https://doi.org/10.1007/s10999-023-09692-3.
- Fakhri, M, Saberi, KF. The effect of waste rubber particles and silica fume on the mechanical properties of roller compacted concrete pavement. J Clean Prod 2016;129:521–30. https://doi.org/10.1016/j.jclepro.2016.04.017.
- Kang, J, Chen, X, Yu, Z, Wang, L. Study on the fatigue life and toughness of recycled aggregate concrete based on basalt fiber. Mater Today Commun 2024;40:109397. https://doi.org/10.1016/j.mtcomm.2024.109397.
- Kim, JK, Kim, YY. Experimental study of the fatigue behavior of high strength concrete. Cement Concr Res 1996;26:1513–23. https://doi.org/10.1016/0008-8846-96-00151-2.
- Guo, MM, Feng, ZR, Wang, XJ. Effect of pre-crack on fatigue behaviors of concrete under tension and compression loading. In: Materials Science Forum. Pfaffikon, Switzerland: Trans Tech Publications Ltd; 2016, 873:110–4 pp.
- Medeiros, A, Zhang, X, Ruiz, G, Rena, CY, Velasco, MDSL. Effect of the loading frequency on the compressive fatigue behavior of plain and fiber reinforced concrete. Int J Fatig 2015;70:342–50. https://doi.org/10.1016/j.ijfatigue.2014.08.005.
- Pacheco-Torres, R, Cerro-Prada, E, Escolano, F, Varela, F. Fatigue performance of waste rubber concrete for rigid road pavements. Constr Build Mater 2018;176:539–48. https://doi.org/10.1016/j.conbuildmat.2018.05.030.
- Liu, M, Lu, J, Jiang, W, Ming, P. Study on fatigue damage and fatigue crack propagation of rubber concrete. J Build Eng 2023;65:105718. https://doi.org/10.1016/j.jobe.2022.105718.
- Marques, AM, Correia, JR, De Brito, J. Post-fire residual mechanical properties of concrete made with recycled rubber aggregate. Fire Saf J 2013;58:49–57. https://doi.org/10.1016/j.firesaf.2013.02.002.
- Akbar, M, Hussain, Z, Huali, P, Imran, M, Thomas, BS. Impact of waste crumb rubber on concrete performance incorporating silica fume and fly ash to make a sustainable low carbon concrete. Struct Eng Mech 2023;85.
- Ganjian, E, Khorami, M, Maghsoudi, AA. Scrap-tyre-rubber replacement for aggregate and filler in concrete. Constr Build Mater 2009;23:1828–36. https://doi.org/10.1016/j.conbuildmat.2008.09.020.
- Viswanath, S, Kuchma, DA, LaFave, JM. Experimental investigation of concrete fatigue in axial compression. ACI Struct J 2021;118:263–76.
- Golewski, GL. Determination of fracture mechanic parameters of concretes based on cement matrix enhanced by fly ash and nano-silica. Materials 2024;17:4230. https://doi.org/10.3390/ma17174230.
-
52.
ASTM C136/C136M-19. Standard test method for sieve analysis of fine and coarse aggregates. West Conshohocken: ASTM International; 2019.
ASTM C136/C136M-19 Standard test method for sieve analysis of fine and coarse aggregates West Conshohocken ASTM International 2019
-
53.
Rubber, vulcanized or thermoplastic - Determination of density. Geneva, Switzerland: International Organization for Standardization (ISO); 2018.
Rubber, vulcanized or thermoplastic - Determination of density Geneva, Switzerland International Organization for Standardization (ISO) 2018
-
54.
ASTM. Standard test method for compressive strength of cylindrical concrete specimens. ASTM C39-20. West Conshohocken, PA: ASTM International; 2020.
ASTM Standard test method for compressive strength of cylindrical concrete specimens ASTM C39-20 West Conshohocken, PA ASTM International 2020
-
55.
ASTM C78. Standard test method for flexural strength of concrete using simple beam with: ASTM International; 2002.
ASTM C78 Standard test method for flexural strength of concrete using simple beam with: ASTM International 2002 .
- Chen, X, Bu, J, Fan, X, Lu, J, Xu, L. Effect of loading frequency and stress level on low cycle fatigue behavior of plain concrete in direct tension. Constr Build Mater 2017;133:367–75. https://doi.org/10.1016/j.conbuildmat.2016.12.085.
- Saucedo, L, Rena, CY, Medeiros, A, Zhang, X, Ruiz, G. A probabilistic fatigue model based on the initial distribution to consider frequency effect in plain and fiber reinforced concrete. Int J Fatig 2013;48:308–18. https://doi.org/10.1016/j.ijfatigue.2012.11.013.
- Xu, J, Fu, Z, Han, Q, Lacidogna, G, Carpinteri, A. Micro-cracking monitoring and fracture evaluation for crumb rubber concrete based on acoustic emission techniques. Struct Health Monit 2018;17:946–58. https://doi.org/10.1177/1475921717730538.
- Cui, K, Xu, L, Li, X, Hu, X, Huang, L, Deng, F, et al.. Fatigue life analysis of polypropylene fiber reinforced concrete under axial constant-amplitude cyclic compression. J Clean Prod 2021;319:128610. https://doi.org/10.1016/j.jclepro.2021.128610.
- Hashin, Z, Rotem, A. A cumulative damage theory of fatigue failure. Mater Sci Eng 1978;34:147–60. https://doi.org/10.1016/0025-5416-78-90045-9.