References
- Peng, C. Calculation of a building’s life cycle carbon emissions based on Ecotect and building information modeling. Journal of Cleaner Production, Vol. 112, 2016, pp. 453–465.
- Asif, U., M. F. Javed, D. M. Alsekait, D. S. AbdElminaam, and H. Alabduljabbar. Toward sustainability: Integrating experimental study and data-driven modeling for eco-friendly paver blocks containing plastic waste. Reviews on Advanced Materials Science, Vol. 63, 2024, id. 20240051.
- Ahmad, W., S. J. McCormack, and A. Byrne. Biocomposites for sustainable construction: A review of material properties, applications, research gaps, and contribution to circular economy. Journal of Building Engineering, Vol. 105, 2025, id. 112525.
- Wu, Y.-F., S. M. S. Kazmi, M. J. Munir, Y. Zhou, and F. Xing. Effect of compression casting method on the compressive strength, elastic modulus and microstructure of rubber concrete. Journal of Cleaner Production, Vol. 264, 2020, id. 121746.
- Ozkilic, Y. O., O. Zeybek, M. Karalar, A. I. Celik, and E. Althaqafi. Experimental and ARX model-based prediction of concrete strength with waste marble powder as replacement of aggregates. Structural Engineering and Mechanics, Vol. 95, 2025, pp. 15–30.
- Bouchelil, L., S. B. S. Jafar, and M. Khanzadeh Moradllo. Evaluating the performance of internally cured limestone calcined clay concrete mixtures. Journal of Sustainable Cement-Based Materials, Vol. 14, 2025, pp. 198–208.
- Tang, B., H. Wu, and Y.-F. Wu. Evaluation of carbon footprint of compression cast waste rubber concrete based on LCA approach. Journal of Building Engineering, Vol. 86, 2024, id. 108818.
- Başaran, B., C. Aksoylu, Y. O. Özkılıç, M. Karalar, and A. Hakamy. Shear behaviour of reinforced concrete beams utilizing waste marble powder, Structures, Vol. 54, 2023, pp. 1090–1100.
- Wang, Q.-Z., N.-N. Wang, M.-L. Tseng, Y.-M. Huang, and N.-L. Li. Waste tire recycling assessment: Road application potential and carbon emissions reduction analysis of crumb rubber modified asphalt in China. Journal of Cleaner Production, Vol. 249, 2020, id. 119411.
- Karalar, M., B. Başaran, C. Aksoylu, Ö. Zeybek, E. Althaqafi, A. N. Beskopylny, et al. Utilizing recycled glass powder in reinforced concrete beams: comparison of shear performance. Scientific Reports, Vol. 15, 2025, id. 6919.
- Murali, G., L. Poka, K. Parthiban, M. K. Haridharan, and A. Siva. Impact response of novel fibre-reinforced grouted aggregate rubberized concrete. Arabian Journal for Science and Engineering, Vol. 44, 2019, pp. 8451–8463.
- Shahjalal, M., K. Islam, T. Ahmed, and R. Ahsan. Mechanical characterization of fiber-reinforced rubberized recycled concrete. Construction and Building Materials, Vol. 412, 2024, id. 134799.
- Su, J.-Y., G. Chen, H.-S. Pan, J.-X. Lin, J. Zhang, K.-X. Zhuo, et al. Rubber modified high strength-high ductility concrete: Effect of rubber replacement ratio and fiber length. Construction and Building Materials, Vol. 404, 2023, id. 133243.
- Cr, S. B. and P. Kathirvel. Development of ternary blended rubberized cement mortar. Materials Today: Proceedings, Vol. 43, 2021, pp. 1241–1245.
- Karimi, H. R., M. R. M. Aliha, E. Khedri, A. Mousavi, S. M. Salehi, P. J. Haghighatpour, et al. Strength and cracking resistance of concrete containing different percentages and sizes of recycled tire rubber granules. Journal of Building Engineering, Vol. 67, 2023, id. 106033.
- Mei, J., G. Xu, W. Ahmad, K. Khan, M. N. Amin, F. Aslam, et al. Promoting sustainable materials using recycled rubber in concrete: A review. Journal of Cleaner Production, Vol. 373, 2022, id. 133927.
- Moasas, A. M., M. N. Amin, K. Khan, W. Ahmad, M. N. A. Al-Hashem, A. F. Deifalla, et al. A worldwide development in the accumulation of waste tires and its utilization in concrete as a sustainable construction material: A review. Case Studies in Construction Materials, Vol. 17, 2022, id. e01677.
- Karalar, M., H. Öztürk, and Y. O. Özkılıç. Experimental and numerical investigation on flexural response of reinforced rubberized concrete beams using waste tire rubber. Steel and Composite Structures, 2022, pp. 43–57.
- Khan, K., W. Ahmad, M. N. Amin, A. Ahmad, S. Nazar, A. A. Alabdullah, et al. Exploring the use of waste marble powder in concrete and predicting its strength with different advanced algorithms. Materials, Vol. 15, 2022, id. 4108.
- Chatbi, M., Z. R. Harrat, M. A. Benatta, B. Krour, M. Hadzima-Nyarko, E. Işık, et al. Nano-clay platelet integration for enhanced bending performance of concrete beams resting on elastic foundation: an analytical investigation. Materials, Vol. 16, 2023, id. 5040.
- Zhao, S. and Q. Zhang. Effect of silica fume in concrete on mechanical properties and dynamic behaviors under impact loading. Materials, Vol. 12, 2019, id. 3263.
- Murali, G., A. K. Nassar, M. Swaminathan, P. Kathirvel, and L. S. Wong. Effect of silica fume and glass powder for enhanced impact resistance in GGBFS-based ultra high-performance geopolymer fibrous concrete: An experimental and statistical analysis. Defence Technology, Vol. 41, 2024, pp. 59–81.
- Waqar, A., M. B. Khan, M. T. Afzal, D. Radu, T. Gălăţanu, C. E. Cazacu, et al. Investigating the synergistic effects of carbon fiber and silica fume on concrete strength and eco-efficiency. Case Studies in Construction Materials, Vol. 20, 2024, id. e02967.
- Lou, Y., K. Khan, M. N. Amin, W. Ahmad, A. F. Deifalla, and A. Ahmad. Performance characteristics of cementitious composites modified with silica fume: A systematic review. Case Studies in Construction Materials, Vol. 18, 2023, id. e01753.
- Yildizel, S. A., Y. O. Özkılıç, and A. Yavuz. Optimization of waste tyre steel fiber and rubber added foam concretes using Taguchi method and artificial neural networks, Structures, Vol. 61, 2024, id. 106098.
- Marani, A., A. Jamali, and M. L. Nehdi. Predicting ultra-high-performance concrete compressive strength using tabular generative adversarial networks. Materials, Vol. 13, 2020, id. 4757.
- Marani, A. and M. L. Nehdi. Machine learning prediction of compressive strength for phase change materials integrated cementitious composites. Construction and Building Materials, Vol. 265, 2020, id. 120286.
- Nunez, I., A. Marani, and M. L. Nehdi. Mixture optimization of recycled aggregate concrete using a hybrid machine learning model. Materials, Vol. 13, 2020, id. 4331.
- Zhang, J., Y. Huang, F. Aslani, G. Ma, and B. Nener. A hybrid intelligent system for designing optimal proportions of recycled aggregate concrete. Journal of Cleaner Production, Vol. 273, 2020, id. 122922.
- Zhang, J., D. Li, and Y. Wang. Toward intelligent construction: Prediction of mechanical properties of manufactured-sand concrete using tree-based models. Journal of Cleaner Production, Vol. 258, 2020, id. 120665.
- Rajasekar, A., K. Arunachalam, and M. Kottaisamy. Assessment of strength and durability characteristics of copper slag incorporated ultra high strength concrete. Journal of Cleaner Production, Vol. 208, 2019, pp. 402–414.
- Naseri, H., H. Jahanbakhsh, P. Hosseini, and F. M. Nejad. Designing a sustainable concrete mixture by developing a new machine learning technique. Journal of Cleaner Production, Vol. 258, 2020, id. 120578.
- Young, B. A., A. Hall, L. Pilon, P. Gupta, and G. Sant. Can the compressive strength of concrete be estimated from knowledge of the mixture proportions?: New insights from statistical analysis and machine learning methods. Cement and Concrete Research, Vol. 115, 2019, pp. 379–388.
- Ahmad, W., V. S. S. C. S. Veeraghantla, and A. Byrne. Advancing sustainable concrete using biochar: Experimental and modelling study for mechanical strength evaluation. Sustainability, Vol. 17, 2025, id. 2516.
- Inqiad, W. B., M. S. Siddique, S. S. Alarifi, M. J. Butt, T. Najeh, and Y. J. H. Gamil. Comparative analysis of various machine learning algorithms to predict 28-day compressive strength of Self-compacting concrete. Heliyon, Vol. 9, 2023, id. e22036.
- Amin, M. N., R.-U.-D. Nassar, K. Khan, S. Ul Arifeen, M. Khan, and M. T. Qadir. Integrating testing and modeling methods to examine the feasibility of blended waste materials for the compressive strength of rubberized mortar. Reviews on Advanced Materials Science, Vol. 63, 2024, id. 20240081.
- Amin, M. N., A. A. A. Al-Naghi, R.-U.-D. Nassar, O. Algassem, S. A. Khan, and A. F. Deifalla. Investigating the rheological characteristics of alkali-activated concrete using contemporary artificial intelligence approaches. Reviews on Advanced Materials Science, Vol. 63, 2024, id. 20240006.
- Ilyas, I., A. Zafar, M. Afzal, M. Javed, R. Alrowais, F. Althoey, et al. Advanced machine learning modeling approach for prediction of compressive strength of FRP confined concrete using multiphysics genetic expression programming. Polymers, Vol. 14, 2022, id. 1789.
- Iftikhar, B., S. C. Alih, M. Vafaei, M. A. Elkotb, M. Shutaywi, M. F. Javed, et al. Predictive modeling of compressive strength of sustainable rice husk ash concrete: Ensemble learner optimization and comparison. Journal of Cleaner Production, Vol. 348, 2022, id. 131285.
- Sarveghadi, M., A. H. Gandomi, H. Bolandi, and A. H. Alavi. Development of prediction models for shear strength of SFRCB using a machine learning approach. Neural Computing and Applications, Vol. 31, 2019, pp. 2085–2094.
- Lee, B. C. and D. M. Brooks. Accurate and efficient regression modeling for microarchitectural performance and power prediction. ACM SIGOPS Operating Systems Review, Vol. 40, 2006, pp. 185–194.
- Khawaja, L., M. F. Javed, U. Asif, L. Alkhattabi, B. Ahmed, and H. Alabduljabbar. Indirect estimation of resilient modulus (Mr) of subgrade soil: Gene expression programming vs multi expression programming, Structures, Vol. 66, 2024, id. 106837.
- Nematzadeh, M., A. A. Shahmansouri, and M. Fakoor. Post-fire compressive strength of recycled PET aggregate concrete reinforced with steel fibers: Optimization and prediction via RSM and GEP. Construction and Building Materials, Vol. 252, 2020, id. 119057.
- Amin, M. N., W. Ahmad, K. Khan, and A. F. Deifalla. Optimizing compressive strength prediction models for rice husk ash concrete with evolutionary machine intelligence techniques. Case Studies in Construction Materials, Vol. 18, 2023, id. e02102.
- Guan, Q. T., Z. L. Tong, M. N. Amin, B. Iftikhar, M. T. Qadir, and K. Khan. Analyzing the efficacy of waste marble and glass powder for the compressive strength of self-compacting concrete using machine learning strategies. Reviews on Advanced Materials Science, Vol. 63, 2024, id. 20240043.
- Iqbal, M. F., Q.-F. Liu, I. Azim, X. Zhu, J. Yang, M. F. Javed, et al. Prediction of mechanical properties of green concrete incorporating waste foundry sand based on gene expression programming. Journal of Hazardous Materials, Vol. 384, 2020, id. 121322.
- Mohammadzadeh S, D., S.-F. Kazemi, A. Mosavi, E. Nasseralshariati, and J. H. M. Tah. Prediction of compression index of fine-grained soils using a gene expression programming model. Infrastructures, Vol. 4, 2019, id. 26.
- Shahin, M. A. Genetic programming for modelling of geotechnical engineering systems, Springer, Switzerland, 2015.
- Çanakcı, H., A. Baykasoğlu, and H. Güllü. Prediction of compressive and tensile strength of Gaziantep basalts via neural networks and gene expression programming. Neural Computing and Applications, Vol. 18, 2009, pp. 1031–1041.
- Alade, I. O., M. A. Abd Rahman, and T. A. Saleh. Predicting the specific heat capacity of alumina/ethylene glycol nanofluids using support vector regression model optimized with Bayesian algorithm. Solar Energy, Vol. 183, 2019, pp. 74–82.
- Alade, I. O., A. Bagudu, T. A. Oyehan, M. A. Abd Rahman, T. A. Saleh, and S. O. Olatunji. Estimating the refractive index of oxygenated and deoxygenated hemoglobin using genetic algorithm–support vector regression model. Computer Methods and Programs in Biomedicine, Vol. 163, 2018, pp. 135–142.
- Zhang, W., R. Zhang, C. Wu, A. T. C. Goh, S. Lacasse, Z. Liu, et al. State-of-the-art review of soft computing applications in underground excavations. Geoscience Frontiers, Vol. 11, 2020, pp. 1095–1106.
- Alavi, A. H., A. H. Gandomi, H. C. Nejad, A. Mollahasani, and A. Rashed. Design equations for prediction of pressuremeter soil deformation moduli utilizing expression programming systems. Neural Computing and Applications, Vol. 23, 2013, pp. 1771–1786.
- Kisi, O., J. Shiri, and M. Tombul. Modeling rainfall-runoff process using soft computing techniques. Computers & Geosciences, Vol. 51, 2013, pp. 108–117.
- Alade, I. O., M. A. Abd Rahman, and T. A. Saleh. Modeling and prediction of the specific heat capacity of Al2 O3/water nanofluids using hybrid genetic algorithm/support vector regression model. Nano-Structures & Nano-Objects, Vol. 17, 2019, pp. 103–111.
- Shahin, M. A. Use of evolutionary computing for modelling some complex problems in geotechnical engineering. Geomechanics and Geoengineering, Vol. 10, 2015, pp. 109–125.
- Gandomi, A. H. and D. A. Roke. Assessment of artificial neural network and genetic programming as predictive tools. Advances in Engineering Software, Vol. 88, 2015, pp. 63–72.
- Band, S. S., E. Heggy, S. M. Bateni, H. Karami, M. Rabiee, S. Samadianfard, et al. Groundwater level prediction in arid areas using wavelet analysis and Gaussian process regression. Engineering Applications of Computational Fluid Mechanics, Vol. 15, 2021, pp. 1147–1158.
- Taylor, K. E. Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research: Atmospheres, Vol. 106, 2001, pp. 7183–7192.