Have a personal or library account? Click to login
Counting Stirling permutations by number of pushes Cover

Counting Stirling permutations by number of pushes

By: Toufik Mansour and  Mark Shattuck  
Open Access
|Dec 2020

References

  1. [1] K. Archer, A. Gregory, B. Pennington and S. Slayden, Pattern restricted quasi-Stirling permutations, Australas. J. Combin., 74 (2019) 389–407.
  2. [2] G.-H. Duh, Y.-C. R. Lin, S.-M. Ma and Y.-N. Yeh, Some statistics on Stirling permutations and Stirling derangements, Discrete Math., 341 (2018) 2478–2484.
  3. [3] I. Gessel and R. P. Stanley, Stirling polynomials, J. Combin. Theory Ser. A, 24 (1978) 25–33.
  4. [4] R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, Second Edition, Addison-Wesley, Boston, 1994.
  5. [5] J. Haglund and M. Visontai, Stable multivariate Eulerian polynomials and generalized Stirling permutations, European J. Combin., 33 (2012) 477–487.
  6. [6] S.-M. Ma, J. Ma and Y.-N. Yeh, The ascent-plateau statistics on Stirling permutations, Electron. J. Combin., 26 (2019) #P2.5.10.37236/8008
  7. [7] S.-M. Ma and T. Mansour, The 1/k-Eulerian polynomials and k-Stirling permutations, Discrete Math., 338 (2015) 1468–1472.10.1016/j.disc.2015.03.015
  8. [8] S.-M. Ma and T. Mansour, Pattern restricted Stirling k-ary words, the plateau statistic and the kernel method, Discrete Appl. Math., 206 (2016) 100–108.10.1016/j.dam.2016.02.014
  9. [9] J. B. Remmel and A. T. Wilson, Block patterns in Stirling permutations, J. Comb., 6 (2015) 179–204.10.4310/JOC.2015.v6.n1.a10
  10. [10] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, at http://oeis.org.
DOI: https://doi.org/10.1515/puma-2015-0038 | Journal eISSN: 1788-800X
Language: English
Page range: 17 - 27
Submitted on: Jun 10, 2019
Accepted on: Jun 13, 2020
Published on: Dec 24, 2020
Published by: Corvinus University of Budapest
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Toufik Mansour, Mark Shattuck, published by Corvinus University of Budapest
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.