Have a personal or library account? Click to login
On the exhaustive generation of generalized ballot sequences in lexicographic and Gray code order Cover

On the exhaustive generation of generalized ballot sequences in lexicographic and Gray code order

Open Access
|Nov 2019

References

  1. [1] A. Bernini, S. Bilotta, R. Pinzani, A. Sabri and V. Vajnovszki, Reected Gray codes for q-ary words avoiding a given factor, Acta Inform., 52 (2015) 573–592.10.1007/s00236-015-0225-2
  2. [2] J. Bertrand, Solution d'un probléme, C. R. Math. Acad. Sci. Paris, 105 (1887) 369.
  3. [3] M. C. Er, On generating the N-ary reected Gray code, IEEE Trans. Comput., 33 (1984) 739-741.10.1109/TC.1984.5009360
  4. [4] F. Gray, Pulse code communication, U.S. Patent 2632058, 1953.
  5. [5] P. Klingsberg, A Gray code for compositions, J. Algorithms, 3 (1981) 41–44.10.1016/0196-6774(82)90006-2
  6. [6] D. E. Knuth, Dancing links, available at https://arxiv.org/pdf/cs/0011047.pdf.
  7. [7] J. M. Lucas, D. R. van Baronaigien and F. Ruskey, On rotations and the generation of binary trees, J. Algorithms, 15 (1993) 1-24.10.1006/jagm.1993.1045
  8. [8] N. J. A. Sloane, The On-line Encyclopedia of Integer Sequences, at http://oeis.org.
  9. [9] M. Renault, Lost (and found) in translation: André's actual method and its application to the generalized ballot problem, Amer. Math. Monthly, 115 (2008) 358–363.10.1080/00029890.2008.11920537
  10. [10] F. Ruskey, Combinatorial Generation, in preparation, 2003.
  11. [11] A. Sabri and V. Vajnovszki, Two reected Gray code based orders on some restricted growth sequences, The Computer Journal, 58 (2015) 1099–1111.10.1093/comjnl/bxu018
  12. [12] A. Sabri and V. Vajnovszki, More restricted growth functions: Gray codes and exhaustive generations, Graphs Combin., 33 (2017) 573–582.10.1007/s00373-017-1774-7
  13. [13] A. Sabri, V. Vajnovszki, Exhaustive generation for ballot sequences in lexicographic and Gray code order, In: L. Ferrari, M. Vamvakari (Eds.), Proceedings of the 11th International Conference on Random and Exhaustive Generation of Combinatorial Structures, Athens, Greece, June 18-20, 2018. CEUR Workshop Proceedings, 2113 (2018) 195–201.
  14. [14] B. Sagan, The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions, Springer-Verlag, New York, 2001.10.1007/978-1-4757-6804-6_3
  15. [15] R. P. Stanley, Enumerative Combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, 62. Cambridge University Press, Cambridge, 1999.
  16. [16] V. Vajnovszki, A loopless generation of bitstrings without p consecutive ones, In: C. S. Calude, M. J. Dineen, S. Sburlan (Eds.), Combinatorics, Computability and Logic. Discrete Mathematics and Theoretical Computer Science. Springer-Verlag, London, 2001, pp. 227–240.10.1007/978-1-4471-0717-0_19
  17. [17] V. Vajnovszki, More restrictive Gray codes for necklaces and Lyndon words, Inform. Process. Lett., 106 (2008) 96–99.10.1016/j.ipl.2007.10.011
  18. [18] V. Vajnovszki and R. Vernay, Restricted compositions and permutations: from old to new Gray codes, Inform. Process. Lett., 111 (2011) 650–655.10.1016/j.ipl.2011.03.022
  19. [19] T. Walsh, Loop-free sequencing of bounded integer compositions, J. Combin. Math. Combin. Comput., 33 (2000) 323–345.
  20. [20] T. Walsh, Generating Gray codes in O(1) worst-case time per word, Lecture Notes in Comput. Sci., 2731 (2003) 71–88.10.1007/3-540-45066-1_5
Language: English
Page range: 109 - 119
Submitted on: Nov 7, 2018
Published on: Nov 1, 2019
Published by: Corvinus University of Budapest
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Ahmad Sabri, Vincent Vajnovszki, published by Corvinus University of Budapest
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.