Have a personal or library account? Click to login
Enumeration of permutations avoiding a triple of 4-letter patterns is almost all done Cover

Enumeration of permutations avoiding a triple of 4-letter patterns is almost all done

Open Access
|Nov 2019

References

  1. [1] M. H. Albert, C. Homberger, J. Pantone, N. Shar and V. Vatter, Generating permutations with restricted containers, at http://arxiv.org/abs/1510.00269.
  2. [2] M. H. Albert, S. Linton and N. Ruskuc, The insertion encoding of permutations, Electron. J. Combin., 12 (2005) #R47.10.37236/1944
  3. [3] D. Callan and T. Mansour, On permutations avoiding 1324, 2143, and another 4-letter pattern, Pure Math. Appl. (PU.M.A.), 26 (2017) 1–10.10.1515/puma-2015-0018
  4. [4] D. Callan and T. Mansour, On permutations avoiding 1243, 2134, and another 4-letter pattern, Pure Math. Appl. (PU.M.A.), 26 (2017) 11–21.10.1515/puma-2015-0019
  5. [5] D. Callan and T. Mansour, Enumeration of small Wilf classes avoiding 1324 and two other 4-letter patterns, Pure Math. Appl. (PU.M.A.), 27(1) (2018) 32–61.10.1515/puma-2015-0026
  6. [6] D. Callan and T. Mansour, Enumeration of small Wilf classes avoiding 1342 and two other 4-letter patterns, Pure Math. Appl. (PU.M.A.), 27(1) (2018) 62–97.10.1515/puma-2015-0027
  7. [7] D. Callan, T. Mansour and M. Shattuck, Wilf classification of triples of 4-letter patterns I, Discrete Math. Theor. Comput. Sci., 19 (2017) #5.10.18576/jant/050104
  8. [8] D. Callan, T. Mansour and M. Shattuck, Wilf classification of triples of 4-letter patterns II, Discrete Math. Theor. Comput. Sci., 19 (2017) #6.10.18576/jant/050104
  9. [9] D. Callan, T. Mansour and M.Shattuck, Wilf classification of triples of 4-letter patterns, at http://arxiv.org/abs/1605.04969.
  10. [10] G. Firro and T. Mansour, Three-letter-pattern avoiding permutations and functional equations, Electron. J. Combin., 13 (2006) #R51.10.37236/1077
  11. [11] Q. Hou and T. Mansour, Kernel method and linear recurrence system, J. Comput. Appl. Math., 261 (2008) 227–242.10.1016/j.cam.2007.05.001
  12. [12] D. E. Knuth, The Art of Computer Programming, 3rd edition, Addison Wesley, Reading, MA, 1997.
  13. [13] D. Kremer and W. C. Shiu, Finite transition matrices for permutations avoiding pairs of length four patterns, Discrete Math., 268 (2003) 171–183.10.1016/S0012-365X(03)00042-6
  14. [14] I. Le, Wilf classes of pairs of permutations of length 4, Electron. J. Combin., 12 (2005) #R25.10.37236/1922
  15. [15] T. Mansour and M. Schork, Wilf classification of subsets of four letter patterns, J. Comb. Number Theory, 8 (2016) 1–129.
  16. [16] T. Mansour and M. Schork, Wilf classification of subsets of eight and nine four-letter patterns, J. Comb. Number Theory, 8 (2016) 257–283.
  17. [17] R. Simion and F. W. Schmidt, Restricted permutations, European J. Combin., 6 (1985) 383–406.10.1016/S0195-6698(85)80052-4
  18. [18] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, at http://oeis.org.
  19. [19] Z. Stankova, Forbidden subsequences, Discrete Math., 132 (1994) 291–316.10.1016/0012-365X(94)90242-9
  20. [20] Z. Stankova, Classification of forbidden subsequences of length four, European J. Combin., 17 (1996) 501–517.10.1006/eujc.1996.0044
  21. [21] V. Vatter, Finding regular insertion encodings for permutation classes, J. Symbolic Comput., 47 (2012) 259–265.10.1016/j.jsc.2011.11.002
  22. [22] J. West, Generating trees and the Catalan and Schröder numbers, Discrete Math., 146 (1995) 247–262.10.1016/0012-365X(94)00067-1
  23. [23] Wikipedia, Permutation pattern, at https://en.wikipedia.org/wiki/Permutation_pattern
  24. [24] Wikipedia, Enumerations of specific permutation classes, available at https://en.wikipedia.org/wiki/Enumerations_of_specific_permutation_classes
Language: English
Page range: 14 - 69
Submitted on: Jan 19, 2018
Accepted on: May 16, 2018
Published on: Nov 1, 2019
Published by: Corvinus University of Budapest
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 David Callan, Toufik Mansour, Mark Shattuck, published by Corvinus University of Budapest
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.