Have a personal or library account? Click to login
A generalization of André-Jeannin’s symmetric identity Cover

A generalization of André-Jeannin’s symmetric identity

Open Access
|Aug 2018

References

  1. [1] W. A. Al-Salam and M. E. H. Ismail, Orthogonal polynomials associated with the Rogers-Ramanujan continued fraction, Pacific J. Math., 104 (1983) 269–283.10.2140/pjm.1983.104.269
  2. [2] R. André-Jeannin, Summation of reciprocals in certain second-order recurring sequences, Fibonacci Quart., 35 (1997) 68–74.10.1080/00150517.1997.12429031
  3. [3] K. S. Briggs, D. P. Little and J. A. Sellers, Tiling proofs of various q-Pell identities via tilings, Ann. Comb., 14 (2010) 407–418.10.1007/s00026-011-0067-8
  4. [4] L. Carlitz, Fibonacci notes 3: q-Fibonacci numbers, Fibonacci Quart., 12 (1974) 317–322.10.1080/00150517.1974.12430696
  5. [5] L. Carlitz, Fibonacci notes 4: q-Fibonacci polynomials, Fibonacci Quart., 13 (1975) 97–102.10.1080/00150517.1975.12430654
  6. [6] I. J. Good, A symmetry property of alternating sums of products of reciprocals, Fibonacci Quart., 32 (1994) 284–287.10.1080/00150517.1994.12429229
  7. [7] A. M. Goyt and B. E. Sagan, Set partition statistics and q-Fibonacci numbers, European J. Combin., 30 (2009) 230–245.10.1016/j.ejc.2008.01.015
  8. [8] A. F. Horadam, Basic properties of a certain generalized sequence of numbers, Fibonacci Quart., 3 (1965) 161–176.10.1080/00150517.1965.12431416
  9. [9] A. F. Horadam, Generating functions for powers of a certain generalized sequence of numbers, Duke Math. J., 32 (1965) 437–446.10.1215/S0012-7094-65-03244-8
  10. [10] M. E. H. Ismail, H. Prodinger and D. Stanton, Schur’s determinants and partition theorems, Sém. Lothar. Combin., B44a (2000) 10 pp.
  11. [11] M. E. H. Ismail and D. Stanton, Ramanujan continued fractions via orthogonal polynomials, Adv. Math., 203 (2006) 170–193.10.1016/j.aim.2005.04.006
  12. [12] T. Mansour and M. Shattuck, Restricted partitions and q-Pell numbers, Cent. Eur. J. Math., 9 (2011) 346–355.10.2478/s11533-011-0002-6
  13. [13] A. M. Morgan-Voyce, Ladder network analysis using Fibonacci numbers, IRE Transactions on Circuit Theory, 6.3 (1959) 321–322.10.1109/TCT.1959.1086564
  14. [14] E. Munarini, Generalized q-Fibonacci numbers, Fibonacci Quart., 43 (2005) 234–242.10.1080/00150517.2005.12428364
  15. [15] H. Pan, Arithmetic properties of q-Fibonacci numbers and q-Pell numbers, Discrete Math., 306 (2006) 2118–2127.10.1016/j.disc.2006.03.067
  16. [16] J. O. Santos and A. V. Sills, q-Pell sequences and two identities of V. A. Lebesgue, Discrete Math., 257 (2002) 125–142.10.1016/S0012-365X(01)00475-7
  17. [17] I. Schur, Gesmmelte Abhandungen, Vol. 2, Springer-Verlag, Berlin, 1973, pp. 117–136.
  18. [18] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, published electronically at http://oeis.org/.
  19. [19] M. N. S. Swamy, Properties of the polynomials defined by Morgan-Voyce, Fibonacci Quart., 4 (1966) 73–81.10.1080/00150517.1966.12431395
  20. [20] M. N. S. Swamy, Further properties of Morgan-Voyce polynomials, Fibonacci Quart., 6 (1968) 167–175.10.1080/00150517.1968.12431247
Language: English
Page range: 98 - 118
Submitted on: Oct 30, 2017
Published on: Aug 6, 2018
Published by: Corvinus University of Budapest
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Emanuele Munarini, published by Corvinus University of Budapest
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.