Have a personal or library account? Click to login
Forests and pattern-avoiding permutations modulo pure descents Cover

Forests and pattern-avoiding permutations modulo pure descents

Open Access
|Aug 2018

References

  1. [1] E. Babson and E. Steingrímsson, Generalized permutation patterns and a classification of Mahonian statistics, Sém. Lothar. Combin., 44 (2000) Article B44b.
  2. [2] E. Barcucci, A. Del Lungo, E. Pergola and R. Pinzani, Directed animals, forests and permutations, Discrete Math., 204 (1999) 41–71.10.1016/S0012-365X(98)00366-5
  3. [3] J.-L. Baril, T. Mansour and A. Petrossian, Equivalence classes of permutations modulo excedances, J. Comb., 5 (2014) 453–469.10.4310/JOC.2014.v5.n4.a4
  4. [4] J.-L. Baril and A. Petrossian, Equivalence classes of permutations modulo descents and left-to-right maxima, Pure Math. Appl. (PU.M.A.), 25 (2015) 19–29.10.1515/puma-2015-0002
  5. [5] J.-L. Baril and S. Kirgizov, The pure descent statistics on permutations, Discrete Math., 340 (2017) 2550–2558.10.1016/j.disc.2017.06.005
  6. [6] F. Bergeron, N. Bergeron, R. B. Howlett and D. E. Taylor, A decomposition of the descent algebra of a finite Coxeter group, J. Algebraic Combin., 1 (1992) 23–44.10.1023/A:1022481230120
  7. [7] M. Bóna, Exact enumeration of 1342-avoiding permutations: a close link with labeled trees and planar maps, J. Combin. Theory Ser. A, 80 (1997) 257–272.10.1006/jcta.1997.2800
  8. [8] M. Bóna, Combinatorics of permutations, Chapman and Hall/CRC, Second Edition, 2012.
  9. [9] M. Bousquet-Mélou, New enumerative results on two-dimensional directed animals, Proc. 7th FPSAC, Université de Marne-la-Vallée, Paris, 1995, 103–116.
  10. [10] M. Bousquet-Mélou and S. Butler, Forest-like permutations, Ann. Comb., 11 (2007) 335–354.10.1007/s00026-007-0322-1
  11. [11] I. Gessel and G. Viennot, Binomial determinants, paths, and hook length formulae, Adv. Math., 58 (1985) 300–321.10.1016/0001-8708(85)90121-5
  12. [12] I. Gessel, Symmetric functions and P-recursiveness, J. Combin. Theory Ser. A, 53 (1990) 257–285.10.1016/0097-3165(90)90060-A
  13. [13] S. Kitaev, Patterns in permutations and words, Springer-Verlag, 2011.10.1007/978-3-642-17333-2
  14. [14] D. E. Knuth, The art of computer programming - Vol. 1, Addison-Wesley, Reading MA, 1973, Third edition, 1997.
  15. [15] P. A. MacMahon, Combinatory Analysis. Vols. 1 and 2, Cambridge Univ. Press, Cambridge, UK, 1915 (reprinted by Chelsea, New-York, 1955).
  16. [16] T. Mansour, Combinatorics of Set Partitions, Chapman & Hall/CRC, 2013.10.1201/b12691
  17. [17] L. Pudwell, Enumeration schemes for permutations avoiding barred patterns, Electron. J. Combin., 17 (2010) #R29.10.37236/301
  18. [18] R. Simion and F. W. Schmidt, Restricted permutations, European J. Combin., 6 (1985) 383–406.10.1016/S0195-6698(85)80052-4
  19. [19] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, Published electronically at http://oeis.org/.
  20. [20] R. P. Stanley, Enumerative Combinatorics - Vol. 1, Cambridge University Press, 1997.10.1017/CBO9780511805967
  21. [21] J. West, Permutations with forbidden subsequences and stack-sortable permutations, Ph.D. Thesis, MIT, 1990.
  22. [22] R. M. Wilson and J. H. Lint, A course in combinatorics - Vol. I, Cambridge University Press, 2002.
Language: English
Page range: 18 - 31
Submitted on: Jun 16, 2017
Published on: Aug 6, 2018
Published by: Corvinus University of Budapest
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Jean-Luc Baril, Sergey Kirgizov, Armen Petrossian, published by Corvinus University of Budapest
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.