Have a personal or library account? Click to login
On certain functional equations related to Jordan *-derivations in semiprime *-rings and standard operator algebras Cover

On certain functional equations related to Jordan *-derivations in semiprime *-rings and standard operator algebras

Open Access
|Aug 2018

References

  1. [1] S. Ali and A. Fošner, On Jordan (α,β)*-derivation in semiprime *-rings, Int. J. Algebra, 4 (2010) 99–108.
  2. [2] M. Ashraf, N. Rehman and Shakir Ali, On Lie ideals and Jordan generalized derivations of prime rings, Indian J. Pure Appl. Math., 34 (2003) 291–294.
  3. [3] M. Ashraf and N. Rehman, On Jordan ideals and Jordan derivations of prime rings, Demonstratio Math., 37 (2004) 275–284.10.1515/dema-2004-0303
  4. [4] M. Brešar, Jordan derivations on semiprime rings, Proc. Amer. Math. Soc., 104 (1988) 1003–1006.10.1090/S0002-9939-1988-0929422-1
  5. [5] M. Brešar, Jordan mappings of semiprime rings, J. Algebra, 127 (1989) 218–228.10.1016/0021-8693(89)90285-8
  6. [6] M. Brešar and J. Vukman, Jordan derivations on prime rings, Bull. Austral. Math. Soc., 37 (1988) 321–322.10.1017/S0004972700026927
  7. [7] M. Brešar and J. Vukman, On some additive mappings in rings with involution, Aequationes Math., 38 (1989) 178–185.10.1007/BF01840003
  8. [8] M. Brešar and B. Zalar, On the structure of Jordan *-derivation, Colloq. Math., 63 (1992) 163–171.10.4064/cm-63-2-163-171
  9. [9] J. Cusack, Jordan derivations on rings, Proc. Amer. Math. Soc., 53 (1975) 321–324.10.1090/S0002-9939-1975-0399182-5
  10. [10] M. Fošner and D. Iliševič, On Jordan triple derivations and related mappings, Mediterr. J. Math., 5 (2008) 415–427.10.1007/s00009-008-0159-9
  11. [11] I. N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc., 8 (1957) 1104–1119.10.1090/S0002-9939-1957-0095864-2
  12. [12] I. N. Herstein, Topics in Ring Theory, The University of Chicago Press, Chicago, London, 1969.
  13. [13] I. N. Herstein, Rings with Involution, The University of Chicago Press, Chicago, London, 1979.
  14. [14] K. H. Kim and Y. H. Lee, A note on *-derivations on *-prime rings, Int. Math. Forum, 12 (2017) 391–398.10.12988/imf.2017.7114
  15. [15] P. Šemrl, On Jordan *-derivations and an application, Colloq. Math., 59 (1990) 241–251.10.4064/cm-59-2-241-251
  16. [16] P. Šemrl, Quadratic functionals and Jordan *-derivations, Studia Math., 97 (1991) 157–165.10.4064/sm-97-3-157-165
  17. [17] P. Šemrl, Jordan *-derivations of standard operator algebras, Proc. Amer. Math. Soc., 120 (1994) 515–518.10.1090/S0002-9939-1994-1186136-6
  18. [18] N. Širovnik, On certain functional equation in semiprime rings and standard operator algebras, Cubo, 16 (2014) 73–80.
  19. [19] N. Širovnik and J. Vukman, On certain functional equation in semiprime rings, Algebra Colloq., 23 (2016) 65–70.10.1142/S1005386716000080
  20. [20] N. Širovnik, On functional equations related to derivations in semiprime rings and standard operator algebras, Glas. Mat. Ser. III, 47 (2012) 95–104.10.3336/gm.47.1.07
  21. [21] J. Vukman, Some remarks on derivations in semiprime rings and standard operator algebras, Glas. Mat. Ser. III, 46 (2011) 43 48.10.3336/gm.46.1.07
  22. [22] J. Vukman, Identities with derivations and automorphisms on semiprime rings, Int. J. Math. Math. Sci., 7 (2005) 1031 1038.10.1155/IJMMS.2005.1031
  23. [23] J. Vukman, Identities related to derivations and centralizers on standard operator algebras, Taiwanese J. Math., 11 (2007) 255–265.10.11650/twjm/1500404650
  24. [24] J. Vukman, A note on Jordan *-derivations in semiprime rings with involution, Int. Math. Forum, 13 (2006) 617–622.10.12988/imf.2006.06053
Language: English
Page range: 1 - 17
Submitted on: Apr 17, 2017
Published on: Aug 6, 2018
Published by: Corvinus University of Budapest
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Mohammad Ashraf, Bilal Ahmad Wani, published by Corvinus University of Budapest
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.