Have a personal or library account? Click to login
The optimal rate of return for defined contribution pension systems in a stochastic framework Cover

The optimal rate of return for defined contribution pension systems in a stochastic framework

Open Access
|Sep 2018

References

  1. [1] J. F. Jimeno, J. A. Rojas, S. Puente, Modelling the impact of aging on social security expenditures, Economic Modelling 25 (2) (2008) 201–224.10.1016/j.econmod.2007.04.015
  2. [2] D. A. Robalino, A. Bodor, On the financial sustainability of earnings-related pension schemes with ‘pay-as-you-go’ financing and the role of government-indexed bonds, Journal of Pension Economics and Finance 8 (02) (2009) 153–187.10.1017/S1474747207003186
  3. [3] H. Wang, B. Koo, C. O’Hare, Retirement planning in the light of changing demographics, Economic Modelling 52 (2016) 749–763.10.1016/j.econmod.2015.10.014
  4. [4] A. J. Auerbach, R. Lee, Welfare and generational equity in sustainable unfunded pension systems, Journal of Public Economics 95 (1) (2011) 16–27.10.1016/j.jpubeco.2010.09.008314811121818166
  5. [5] M. Angrisani, A. Attias, S. Bianchi, Z. Varga, Sustainability of a pay-as-you-go pension system by dynamic immigration control, Applied Mathematics and Computation 219 (5) (2012) 2442–2452.10.1016/j.amc.2012.08.080
  6. [6] R. Holzmann, E. E. Palmer, et al., Pension reform: Issues and prospects for non-financial defined contribution (NDC) schemes, World Bank Publications, 2006.10.1596/978-0-8213-6038-5
  7. [7] R. Holzmann, E. Palmer, D. Robalino, Nonfinancial Defined Contribution Pension Schemes in a Changing Pension World: Volume 2, Gender, Politics, and Financial Stability, Vol. 2, World Bank Publications, 2012.10.1596/978-0-8213-9478-6
  8. [8] J. B. Williamson, M. Price, C. Shen, Pension policy in China, Singapore, and South Korea: An assessment of the potential value of the notional defined contribution model, Journal of Aging Studies 26 (1) (2012) 79–89.10.1016/j.jaging.2011.08.002
  9. [9] O. Settergren, The automatic balance mechanism of the swedish pension system, Wirtschaftspolitische Blätter 4 (2001) 2001.
  10. [10] C. Vidal-Meliá, M. C. Boado-Penas, O. Settergren, Automatic balance mechanisms in pay-as-you-go pension systems, The Geneva Papers on Risk and Insurance Issues and Practice 34 (2) (2009) 287–317.10.1057/gpp.2009.2
  11. [11] P. A. Samuelson, An exact consumption-loan model of interest with or without the social contrivance of money, The Journal of Political Economy (1958) 467–482.10.1086/258100
  12. [12] H. Aaron, The social insurance paradox, Canadian Journal of Economics and Political Science/Revue canadienne de economiques et science politique 32 (03) (1966) 371–374.10.2307/139995
  13. [13] O. Settergren, B. D. Mikula, The rate of return of pay-as-you-go pension systems: a more exact consumption-loan model of interest, Journal of Pension Economics and Finance 4 (02) (2005) 115–138.10.1017/S1474747205002064
  14. [14] R. Lee, Discussion of ‘The Rate of Return of Pay As You Go Pension Systems: A More Exact Consumption-Loan Model of Interest’, in: Pension Reform: Issues and Prospects for Non-Financial Defined Contribution (NDC) Schemes, The World Bank, Washington, 2006, pp. 143–147.
  15. [15] M. Bielecki, K. Goraus, J. Hagemejer, K. Makarski, J. Tyrowicz, Small assumptions (can) have a large bearing: evaluating pension system reforms with olg models, Economic Modelling 48 (2015) 210–221.10.1016/j.econmod.2014.10.043
  16. [16] A. J. Auerbach, R. Lee, Notional defined contribution pension systems in a stochastic context: Design and stability, in: Social Security Policy in a Changing Environment, University of Chicago Press, 2009, pp. 43–68.10.7208/chicago/9780226076508.003.0003
  17. [17] M. Angrisani, Funded and unfunded systems: two ends of the same stick, 28th International Congress of Actuaries PARIS: ICA.
  18. [18] M. Angrisani, The logical sustainability of the pension system, Pure Mathemathics and Applications 19 (2008) 67–81.
  19. [19] M. Angrisani, C. Di Palo, A Necessary Sustainability Condition for partially Funded Pension Systems, in: MIC 2011: Managing Sustainability? Proceedings of the 12thInternational Conference, Portorož, 23–26 November 2011 [Selected Papers], University of Primorska, Faculty of Management Koper, 2011, pp. 773–788.
  20. [20] M. Angrisani, C. Di Palo, An extension of Aaron’s sustainable rate of return to partially funded pension systems, International Journal of Sustainable Economy 4 (3) (2012) 213–233.10.1504/IJSE.2012.047956
  21. [21] M. Angrisani, C. Di Palo, Managing the baby boomer demographic wave in defined contribution pension systems, Politica economica-Journal of Economic Policy (PEJEP) 30 (1) (2014) 51–72.
  22. [22] M. Angrisani, C. Di Palo, Controlling a demographic wave in defined contribution pension systems, Pure Mathematics and Applications.
  23. [23] O. Vasicek, An equilibrium characterization of the term structure, Journal of Financial Economics 5 (2) (1977) 177–188.10.1016/0304-405X(77)90016-2
  24. [24] A. K. Dixit, R. S. Pindyck, Investment under uncertainty, Princeton university press, 1994.10.1515/9781400830176
  25. [25] Human Mortality Database, Data on mortality, Tech. rep., University of California, Berkeley (USA) and Max Planck Institute for Demographic Research (Germany). Available at www.humanmortality.de ((data downloaded 2016)). URL http://www.humanmortality.de
  26. [26] Swedish Pensions Agency, Orange Report: Annual Report of the Swedish Pension System 2013, Tech. rep., Swedish Pensions Agency (2014).
Language: English
Page range: 81 - 99
Submitted on: Sep 30, 2017
Published on: Sep 1, 2018
Published by: Corvinus University of Budapest
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Massimo Angrisani, Giovanni di Nella, Cinzia di Palo, Augusto Pianese, published by Corvinus University of Budapest
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.