Have a personal or library account? Click to login
On permutations avoiding 1324, 2143, and another 4-letter pattern Cover

On permutations avoiding 1324, 2143, and another 4-letter pattern

By: David Callan and  Toufik Mansour  
Open Access
|Jul 2017

References

  1. [1] D. Callan and Mansour, A Wilf class composed of 7 symmetry classes of triples of 4-letter patterns, J. Analysis and Number Theory, 5 (2017) 19-26.10.18576/jant/050104
  2. [2] D. Callan, T. Mansour and M. Shattuck, Twelve subsets of permutations enumerated as maximally clustered permutations, Ann. Math. Inform., to appear.
  3. [3] D. Callan, T. Mansour and M. Shattuck, Wilf classification of triples of 4-letter patterns I, Discrete Math. Theor. Comput. Sci., 19 (2017) #5, 35pp.10.18576/jant/050104
  4. [4] D. Callan, T. Mansour and M. Shattuck, Wilf classification of triples of 4-letter patterns II, Discrete Math. Theor. Comput. Sci., 19 (2017) #6, 44pp.10.18576/jant/050104
  5. [5] R. Simion and F. W. Schmidt, Restricted permutations, European J. Combin., 6 (1985) 383-406.10.1016/S0195-6698(85)80052-4
  6. [6] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, at oeis.org.
  7. [7] V. Vatter, Finding regular insertion encodings for permutation classes, J. Symbolic Comput., 47 (2012) 259-265.10.1016/j.jsc.2011.11.002
Language: English
Page range: 1 - 10
Submitted on: Jun 7, 2016
Published on: Jul 14, 2017
Published by: Corvinus University of Budapest
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 David Callan, Toufik Mansour, published by Corvinus University of Budapest
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.